Nonequilibrium Gas Dynamics:
Understanding of High-Speed Flows
at Strong Energy Mode Disequilibrium

Igor V. Adamovich

Seminar at the Department of Aeronautical Engineering

January 28, 2008
Faculty:

Igor Adamovich, Walter Lempert, Bill Rich, Vish Subramaniam

Post-docs:

Naibo Jiang, Evgeny Mintusov, Munetake Nishihara, Anna Serdyuchenko

Students:

Sherrie Bowman, John Bruzzese, Inchul Choi, Ashim Dutta, Saurabh Keshav, Mruthunjaya Uddi, Matt Webster, Yvette Zuzeek
Scope of Research

• Generation and sustaining of stable high-pressure weakly ionized plasmas
• High-speed flow control by nonequilibrium plasmas / MHD
• Ignition, combustion, and flameholding by nonequilibrium plasmas
• Molecular gas lasers
• Kinetics of gases, plasmas, and liquids at extreme thermodynamic disequilibrium
• Molecular energy transfer processes: excitation and relaxation of vibrational and electronic levels, chemical reactions among excited species, plasma radiation
• Electron and ion kinetics: ionization, recombination, electron attachment and detachment, charge transfer, inelastic electron-molecule collisions
• Flow visualization and optical diagnostics
“Air Plasma Ramparts Using Metastable Molecules” (AFOSR MURI '97-'02)

“Anomalous Shock Wave Propagation and Dispersion in Weakly Ionized Plasmas” (AFOSR '99-'01, NASA '99-'00)

“Effect of Vibrational Nonequilibrium on Electron Kinetics in High Pressure Molecular Plasmas” (NSF/DOE, '00-'06)

(AFRL/DAGSI, '01-'03) “Non-Thermal Ignition Phenomena for Aerospace Applications”

“Generation and Characterization of Stable, Weakly Ionized Air Plasmas in Hypersonic Flows” (AFRL/DAGSI, '01-'03)

“Energy Transfer Rates and Mechanisms for Hypervelocity Vehicle Radiation” (AFOSR, '01-'07)

“Effect of MHD Forces on Stability and Separation of Nonequilibrium Ionized Supersonic Flow” (AFOSR, '02-'04)

“Plasma Flow Control Technology for Hypersonic Boundary Layer Transition Control” (AFRL, '02-'05)

“Electric Discharge Oxygen-Iodine Laser” (AFRL, '04-'06)
“Plasma Assisted Ignition Module for Aerospace Propulsion Systems” (AFOSR, '04-'06)
“Nonequilibrium Supersonic Magnetogasdynamic Wind Tunnel” (AFOSR, '05-'07)
“Instrumentation for Generation and Optical Diagnostics of Repetitively Pulsed Fast Ionization Wave Plasmas in Supersonic Flows” (AFOSR DURIP, '05-'06)
“Active Control of Jet Noise Using Plasma Actuators” (NASA '02, '05-'06, with GDTL)
“Electric Discharge Oxygen-Iodine Laser Operating at High Pressure” (JTO, '06-'08)
“Kinetic Studies of Plasma Assisted Combustion By Non-Equilibrium Discharges” (AFOSR, '07-'09)
“Nonequilibrium Ignition and Flameholding in High-Speed Reacting Flows” (NASA, '07-'09)
“Supersonic Jet Noise Suppression Using Plasma Actuators” (NASA '07-'09, with GDTL)

“Nonequilibrium Gas Dynamics” (AFOSR '08-'10)
NETL Research in Broader Context:
National Hypersonic Basic Research Plan (AFOSR, NASA, SNL)

Thrust Areas

- Boundary Layer Physics
- Nonequilibrium Flows*
- Shock-Dominated Flows
- Environment-Material Interactions
- High-Temperature Materials
- Supersonic Combustion*

* studied in NETL
Critical System Impact of Nonequilibrium Hypersonic Flows

• TPS Design: Current uncertainties for reacting air (and other gases) at re-entry and cruise create estimated factor of two errors in predicting heat load and designing leading edges, TPS

• Aerodynamic Control: High-altitude aerodynamics including pitching moments and reaction control systems/surfaces not predictable. Wake heating and large angle-of-attack flows not predictable
Nonequilibrium Hypersonic Flows: Key Technical Issues

Planetary Entry

Global Strike / Responsive Space
Nonequilibrium Hypersonic Flows:
Key Technical Issues (continued)

Plasma blackout:
plasma generated by hypersonic flow
blocks telemetry – big issue for both
development and operation

Space Situational Awareness:
track/ID unknown missiles / satellites
using their EM signatures
Temperature behind a 12 km/sec shock predicted by SOA model is not even close to experiment (in pure nitrogen!)

Matsuda et al, JTHT, 2004

Static temperature and NO fraction predicted by SOA model in a M=15 expansion “air” flow are off.

Experiment: LENS, M=15, run time ~1 msec

Candler et al, AIAA Paper, 2007

<table>
<thead>
<tr>
<th></th>
<th>Experiment</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow velocity, m/s</td>
<td>4517</td>
<td>4354</td>
</tr>
<tr>
<td>Temperature, K</td>
<td>250-300</td>
<td>620</td>
</tr>
<tr>
<td>NO fraction, %</td>
<td>1.5</td>
<td>5.4</td>
</tr>
</tbody>
</table>

We have a problem (might be both with experiment and modeling)

Basic research vision for the next 30 years must include development and validation of design tools that simulate hypersonic vehicle aero thermodynamics and propulsion
Key Challenges

- Due to shock waves, boundary layers, or rarefaction, concept of single temperature breaks down, fluid dynamic equations break down, chemistry is not well understood.
- Understanding / predicting these flows requires insight into molecular / surface / radiation / plasma interactions.
- Four interacting research areas:

 - Basic chemical physics
 - Ground test, flight data: Facilities, advanced diagnostics
 - Simplified “good enough” models: gases, gas-surface, plasma
 - Aerothermo simulations: speed, validity

Need to predict nonequilibrium hypersonic flows based on sound physics, not extrapolations of measurements or empirical correlations.
Strategic (Long Term) Goals

Foster development of both technical and human resources for the exploration, characterization and control of flows at high Mach numbers with significant thermochemical nonequilibrium.

• Development of validated physics-based tools for prediction of heating, aerodynamics, etc of hypersonic system

• Transfer of proven, physics-based models and simulation methods and complementary technical expertise to industry and applied research

• Development and maintenance of essential human resources to capitalize on and continue progress in this area.
Objectives Defined by Nonequilibrium Thrust Panel
at NASA / Air Force Workshop, June 2007

Near term (<5 years):

- Measure key air reaction rates and mechanisms at higher temperatures
- Develop improved catalytic wall-boundary condition for hypersonic flow with typical surface
- Plan, design, fund facilities for well-characterized reacting hypersonic flow data
- Obtain ground and/or flight data with spectral, species, or spatially-resolved reacting hypersonic flow. Utilize/coordinate with NATO RTO results

Mid-term (5-10 years):

- Measure / accurately calculate all important atmospheric (earth/other) gas reactions at ultra-high temperatures
- Validate advanced ultra-high temperature models for excited states, relaxation, surface collisions, catalysis, ablation
- Complete integrated radiation transport models; accurate ultra-high temperature gas transport properties
- Well-characterized reacting hypersonic flow data using advanced diagnostics
- Fast CFD and kinetic simulation tools with integrated physics models
I. Ability to generate and sustain \textit{steady-state} supersonic flows with strong energy mode disequilibrium and \textit{targeted energy loading}

II. In-depth flow characterization using advanced optical diagnostics

III. \textit{Physics-based}, validated molecular energy transfer and nonequilibrium chemical reaction models

IV. New research program: characterization of nonequilibrium supersonic flows, developing instrumentation for use at a national hypersonic facility (LENS)

V. Future research thrusts
A Bit of History:
Shock Weakening by Weakly Ionized Plasmas

Ballistic range / glow discharge experiments
(Russia, 1980’s; U.S., 1990’s)

- shock stand-off distance increases
- wave drag reduction up to 50%

Suggested Interpretations

- vibrational relaxation
- ion-acoustic wave
- nonuniform heating

Bow shock around a sphere.
Air, P=9.5 torr, u=1600 m/s
(AEDC, 1999)
Case 1: Steady State Plasma Shock Experiment

The Ohio State University
Nonequilibrium Thermodynamics Laboratories

Transverse RF discharge electrodes
Aerodynamically Stabilized DC Glow Discharge
Cathode
Nozzle
Test Section
Diffuser

Anode
Wedge
M=2 plasma flows with and without RF ionization

P₀ = 250 torr, N₂/He = 50/50 mixture, Pₜₐₛₜ = 48 torr

RF discharge off
nₑ ≈ 10⁹ cm⁻³

RF discharge on
nₑ = (1-3)⋅10¹¹ cm⁻³

Stable, uniform, and diffuse plasmas in both cases
Shock weakening by the RF plasma:
\[\Delta \alpha = 15^0, \Delta M = -0.2 \]

Slow shock weakening and recovery: thermal effect
Flow temperature measurements
(CO FT infrared emission spectroscopy – with 4% CO added)

Intensity

DC discharge on (230 W)

RF discharge on (200 W)

Wavenumbers

ln[I_{em}/(J'+J''+1)]

0 100 200 300 400

J'(J'+1)

-10.0

-8.0

-6.0

-4.0

with RF

no RF

Almost no core flow heating by the discharge
Noticeable boundary layer heating
Temperature measurements summary

The Ohio State University
Nonequilibrium Thermodynamics Laboratories

Temperature rise consistent with shock angle change ($\Delta M = -0.2$ for both)

- $\Delta T = 15\,\text{K}$ (low J' fit)
- $\Delta T = 50\,\text{K}$ (high J' fit)
- $\Delta T = 35\,\text{K}$
 (all available data fit)

Rotational temperature, K

RF power, W
Case 2: Supersonic Flow Control by Low-Temperature MHD

- Pulsed electric field perpendicular to the flow, parallel to magnetic field
- DC sustainer field perpendicular both to flow and pulsed electric field
- Optical access along vertical and horizontal line-of-sight
- Four combinations of current and magnetic field directions: Accelerating or decelerating Lorentz force, $j \times B$
Low-temperature MHD test sections (M=3, M=4)

- Contoured nozzle
- 12 cm long, 4 cm x 2 cm test section
- Equipped with pressure ports and Pitot ports
- Ceramic/copper pulsed and DC electrode blocks
- Stagnation pressure $P_0=0.2\text{--}1.0$ atm
- Ionization: repetitively pulsed discharge
Laser Differential Interferometry (LDI) diagnostics: BL density fluctuation spectra measurements

Flow

To vacuum

Magnet pole

Magnet coil

He-Ne laser

Photodiode

Probe beam

Reference beam

Flow

The Ohio State University

Nonequilibrium Thermodynamics Laboratories
Boundary layer visualization by laser sheet scattering: comparison with a 3-D compressible Navier-Stokes flow code

The Ohio State University

Nonequilibrium Thermodynamics Laboratories

Laser sheet scattering setup:
- Optical window
- Laser sheet
- Test section
- Distance to wall
- ICCD camera
- Scattering signal
- Flow
- Cylindrical lens
- Mirror
- λ/4 plate
- Laser

Flow scattering signal:
- P₀=250 torr, 2 mm from the wall
- P₀=150 torr, 2 mm from the wall
Repetitively pulsed discharge (40 kHz rep rate) + DC sustainer in M=4 air flow

Nonequilibrium Thermodynamics Laboratories The Ohio State University

Air, M=4, B=1.5 T

\[P_0 = 1 \text{ atm}, \quad P_{\text{test}} = 13 \text{ torr}, \quad U_{\text{max}} = 13 \text{ kV} \]

Shock train in a M=3 low-pressure diffuser

Plasma always remains uniform and stable for run times of several seconds

How did we achieve that?
Pulser-sustainer discharge: stable plasmas at high powers

M=3 nitrogen flow, P₀=1/3 atm, Pₜₑˢᵗ=8 torr

Pulse energy 1-2 mJ

Time averaged pulsed discharge power 40-80 W

<\textbf{I}> = 0.9 A

DC discharge power 1.4 kW

<\textbf{σ}> = 0.073 mho/m, B=1.5 T
MHD effect on boundary layer density fluctuations: Accelerating vs. retarding Lorentz force

Decelerating force

Accelerating force

Air, M=3, P₀=250 torr
Boundary layer fluctuations increase by retarding Lorentz force

Air
R=0.5 kOhm, <I>=0.78 A
6 mm away from the wall

Intensity, dB

-55 -
-50 -
-45 -
-40 -
-35 -

10000
100000
Frequency, Hz

Frequency, Hz

Flow

Nonequilibrium Thermodynamics Laboratories
The Ohio State University

The Ohio State University
Flow acceleration / deceleration by MHD: Static pressure measurements in M=3 air flows

Air, $P_0=250$ torr, $P_{test}=8.7$ torr

$U_{PS}=2$ kV, $R=0.5$ kΩ, $<I>=1.2$ A

Pulsed discharge duration 0.5 s

$$\frac{\Delta p_R - \Delta p_A}{p} = 0.11$$

Joule heating factor:

$$\alpha=0.10$$

(90% of discharge energy stored in N_2 vibrations)
Comparison with quasi-1-D theory

Joule heating factor
\[\alpha = 0.1, 0.05, 0.0 \]

Normalized pressure

Decelerating force Accelerating force

\[\Delta M_{\pm} = -0.13 \text{ at } I = \pm 1.0 \text{ A in air} \]

\[\Delta p_R - \Delta p_A \approx 2 \cdot \frac{(\gamma - 1)M^2 + 1}{M^2 - 1} \cdot j_y B_z L \]

Very good agreement with experiment
Comparison with 3-D Navier-Stokes code: velocity and pressure profiles

Predicted velocity change $\Delta u = 14$ m/sec (2%)
Further insight: Molecular Tagging Velocimetry (MTV) in NO-seeded MHD flows

The Ohio State University
Nonequilibrium Thermodynamics Laboratories

1% NO in N₂
Images of “painted” line at t=0 ns and t=600 ns
Fluorescence
NO(A²Σ) → NO(X²Π)

Cold flow velocity:
647 ± 4 m/s
3-D Navier-Stokes code prediction:
660 m/s
Flow velocity with plasma/MHD on:
471 ± 9 m/s
Much slower than predicted by code (evidence of stronger Joule heating?)
Case 3: Electric Discharge Excited Oxygen-Iodine Laser ($\lambda=1.3$ μm, c.w. power 1.5 W)

Discharge volume 50 cm3, pressures up to 460 torr, flow rate up to 0.1 mole/sec (O$_2$), 1 mole/sec (He)
Crossed pulser-sustainer discharge characterization: 10% O\textsubscript{2} in He, P\textsubscript{0} = 120 torr

FID pulser:
40 kV peak voltage, 5 ns pulse duration, 100 kHz pulse rep rate, duty cycle < 1/2,000

Sustainer discharge voltage and current
Crossed pulser-sustainer discharge: targeted energy loading (controlled by T_e, or E/N)

10% O_2 in He: up to 30% of input power goes to $O_2(a^1\Delta)$ state
Discharge Excited Oxygen-Iodine Laser (DOIL) Kinetics

\[O_2(X^3\Sigma) + e \rightarrow O_2(a^1\Delta) + e \]

\[n \cdot O_2(a^1\Delta) + I_2 \rightarrow n \cdot O_2(X^3\Sigma) + I + I \]

\[O_2(a^1\Delta) + I \leftrightarrow O_2(X^3\Sigma) + I^* \]

\[I^* \rightarrow I + h\nu \]

Need as much \(O_2(a^1\Delta) \) as can be produced

Need low temperature to shift equilibrium in reaction (3) to the right (i.e. more \(I^* \))
Singlet delta oxygen yield measurements by emission spectroscopy (radiative lifetime 75 min)

The Ohio State University
Nonequilibrium Thermodynamics Laboratories

<table>
<thead>
<tr>
<th>P₀, torr</th>
<th>Discharge power, kW</th>
<th>P, torr</th>
<th>M</th>
<th>T, K</th>
<th>SDO yield, %</th>
<th>Threshold yield, %</th>
<th>Power stored in SDO, W</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>1.6</td>
<td>1.9</td>
<td>3.0</td>
<td>120±15</td>
<td>5.7±0.85</td>
<td>2.3</td>
<td>110</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>100±10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>120</td>
<td>2.1</td>
<td>3.8</td>
<td>3.0</td>
<td>120±15</td>
<td>5.0±0.75</td>
<td>2.3</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>100±15</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Case 4: Low-temperature plasma assisted combustion

Ignition in C$_2$H$_4$/air: P=70 torr, u=15 m/s, $\Phi=0.9$, $\nu=40$ kHz
Plasma temperature: N_2 visible emission spectra
Species concentrations: FTIR absorption spectra

The Ohio State University
Nonequilibrium Thermodynamics Laboratories
Ethylene/air: different flow velocities

Temperature [°C]

P=70 torr, Φ=1
Air-Ethylene
Air

Unreacted fuel [%]

Air-ethylene
P=70 torr, Φ=1

Flow Velocity [m/s]

10 20 30 40 50

0 100 200 300 400 500 600

10 20 30 40 50

0 10 20 30 40 50

P=70 torr, Φ=1.0, ν=50 kHz
Significant fuel oxidation, resultant flow temperature rise

Kinetic analysis suggests that pulsed discharge generates significant amounts of O atoms (chemically active radicals)
Nonequilibrium air flow characterization:
What species do we need to measure?
How are we going to generate them?

$\text{N}_2(\text{electronically excited}) + \text{O}_2 \rightarrow \text{N}_2 + \text{O} + \text{O}$

$\text{O}_2(\text{electronically excited}) \rightarrow \text{O} + \text{O}$

$\text{N}_2(\nu), \text{O}_2(\nu), \text{O}_2(a^1\Delta), \text{O}, \text{and NO}$

Pulser-sustainer discharge
operated at different E/N
How are we going to measure these species?

Air species vibrational level population measurement:
Spontaneous Raman spectroscopy

Relative population

- **CO laser**
- **O₂**
- **N₂**
- **V-V CO-O₂**
- **V-V CO-N₂**
- **CO**

- Uses CO laser (up to 50% efficiency), scalable to high powers
- Based on resonance absorption of laser radiation by CO molecules
- V-T losses are small ⇒ Energy remains locked in molecular vibrational modes
- Works at high pressures (P>1 atm), low temperatures (T~500 K), modest power densities (~100 W/cm²),
Optical pumping of air with a CO laser

Dual CO laser system

Absorption cell

Optically pumped plasma
Schematic of Raman spectroscopy measurements

Probe electrodes

Nd:YAG laser
- probe beam

CO laser
- pump beam

Excited Region

To FTIR

Emission Spectroscopy:
Line-of-Sight Integration
Species: CO, NO, CO₂

To OMA

Raman Spectroscopy:
Point Measurement
Species: CO, N₂, O₂
Spatially resolved Raman spectra of N_2, CO, and O_2 at 1 atm

CO/N_2/O$_2$=5/75/20, P=1 atm
(laser power 10 W)

Spatial resolution 250 µm
Vibrational temperatures and level populations of N₂, CO, and O₂ at 1 atm

Vibrational temperatures: 2000-3000 K, rotational temperature: 300 K

Good agreement with master equation modeling
Raman spectra and vibrational level populations of \(\text{N}_2 \), \(\text{CO} \), and \(\text{O}_2 \) at 0.5 atm

CO/\(\text{N}_2 \)/\(\text{O}_2 \)=8/88/4, P=0.5 atm (laser power 10 W)

5 vibrational levels of \(\text{N}_2 \), 16 vibrational levels of \(\text{O}_2 \)

Good agreement with master equation modeling
Schematic of pulsed Raman pumping of N_2 (w/o CO laser)

Pump Nd:YAG laser operates at 10 Hz
Stokes signal generated in a high-pressure Raman cell
Pulsed Raman pumping:
time-resolved vibrational level populations of N_2

"Instantaneous" $v=1$ pumping (single pump laser pulse ~ 10 nsec)

Time resolution ~0.1 μsec, spatial resolution ~100 μm

Rates of vibration-vibration energy exchange for N_2-N_2 inferred from level populations
Pulsed Raman pumping: time-resolved vibrational level populations of O_2

Rates of vibration-vibration energy exchange for O_2-O_2 inferred from level populations
Measuring ratio of spectrally integrated O atom TALIF signal to that of xenon with identical laser beams, signal collection optics, spectral filtering and PMT gain

Relative signal converted to absolute O atom number density

Estimated combined uncertainty of absolute O atom density about 40%
O atom number density after a single high-voltage nanosecond discharge pulse: TALIF measurements

Nonequilibrium Thermodynamics Laboratories
The Ohio State University

O atom mole fraction

<table>
<thead>
<tr>
<th></th>
<th>Air</th>
<th>Air-methane, $\Phi=1.0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0E+0</td>
<td>5.0E-5</td>
<td>2.0E-5</td>
</tr>
<tr>
<td>0.0E+0</td>
<td>4.0E-5</td>
<td>1.0E-5</td>
</tr>
<tr>
<td>0.0E+0</td>
<td>3.0E-5</td>
<td>0.0E+0</td>
</tr>
</tbody>
</table>

Time, seconds

Air and methane-air mixture

$P=60$ torr, $\Phi=1.0$

Peak O atom density in air: $0.9 \cdot 10^{14}$ cm$^{-3}$/pulse, decay time: 2 msec

Kinetic model correctly predicts O atom densities and decay rates in all three cases
Air, methane-air, and ethylene-air mixtures, P=60 torr, Φ=1.0, pulse burst (up to 100 pulses/msec)

Significant O atom accumulation after 100 pulses in air: 0.2%

Half of input pulse energy goes to oxygen dissociation
How are we going to predict effect of these species on the flow?

Vibrational energy transfer and molecular dissociation rate models

- Applicable for non-collinear collisions of rotating molecules
- Applicable in a wide range of gas temperatures (T~300-10,000 K)
- Excellent agreement with 3-D computer calculations
- Fully analytic
Rate models applicable up to very high temperatures

![Graph showing V-T Rate constant, cm³/s vs Temperature, K.]

- $V-T$ Rate constant, cm³/s
- Temperature, K

![Graph showing $k(T_v, T)/k(T)$ vs T_v/T.]

- $k(T_v, T)/k(T)$
- T_v/T

- Lines indicate different transition states and temperatures:
 - (40,0→39,0)
 - (1,0→0,0)
 - (10,0→9,0)

- Additional notes on graph:
 - $1 - T=5$ kK
 - $2 - T=10$ kK
 - $3 - T=20$ kK
- Lines represent:
 - free rotation
 - impulsive
 - experimental fit
Model validation:
NO IR and UV emission behind strong shocks

NO IR emission, mW/cm³·sr

IR emission,
\(u_s = 3.85 \text{ km/sec} \)

UV emission,
\(u_s = 3.78 \text{ km/sec} \)

NO emission profiles behind the normal shock in air. \(P_0 = 2.25 \text{ torr} \)
Effect of vibrational relaxation on shock standoff distance: quite noticeable

Nitrogen, $M=4$, $T=300$ K, $T_v=3000$ K, $P=10$ torr, nose radius 5 mm

With and without 1% of water vapor

Stand-off distances increases from 0.9 to 1.3 mm
New Research Program: Effect of Excited Species (N$_2$(v), O$_2$(v), O atoms, and O$_2$(a$^1\Delta$)) on M=5 Flow Field

Stagnation enthalpy: 0.3-0.6 MJ/kg
Steady-state flow (~ 10 sec)
LENSS: 10-15 MJ/kg
Run time ~ 1 msec
Objectives

• Stable, high-pressure, nanosecond pulser – DC sustainer discharge in nozzle plenum (P₀ ~ 1 atm)

• Flows: air, N₂/He, O₂/He, N₂/Ar, and O₂/Ar

• Varying DC voltage (E/N): targeted energy loading into O₂(a¹Δ) (E/N=5-10 Td), N₂(v), O₂(v) (10-50 Td), and O atoms (100-200 Td, no DC)

• M=5 flow in supersonic test section (P ~ 1 torr)

• Blunt body in test section (D~5 mm), shock stand-off distance ~ 1 mm

• Schlieren and plasma shock visualization; shock stand-off distance measurements with and without excited species present

• First spatially resolved measurements of rotational temperature, O₂(a¹Δ), N₂(v), O₂(v), and O atoms behind the M=5 bow shock: IR emission, spontaneous Raman, CARS, TALIF (~100 µm resolution)
Objectives (continued)

• Strong vibrational excitation of N₂, O₂, and H₂ using a pulse-burst laser for Raman pumping (20-30 pulses at 1 pulse/µsec rep rate). Measuring vibrationally induced dissociation at high energy loading (several vibrational quanta per molecule) using TALIF

• Comparison with coupled compressible Navier-Stokes / master equation modeling and rate model validation: state-specific vibrational energy transfer and dissociation rates, rates of NO production, O₂(a¹Δ) quenching rates

• Developing instrumentation for using at LENS hypersonic flow facility

• Developing physics-based design tool nonequilibrium flow models with predictive capabilities
• Confident ignition / flameholding / relight in high-speed flows (using large-volume nonequilibrium plasmas)

• Demonstrating scaling potential of DOIL laser power to make The Application feasible: tens to hundreds of W in a laboratory scale setup

• MHD: electrical power generation in reentry flows, opening up “transmission windows” through reentry plasma using B field, power generation in scramjets (stagnation temperature too high for a turbine)
Plasma assisted ignition / flameholding in high-speed flows

High voltage pulse electrode

Straight channel or nozzle inserts

Optical access windows

Fuel injection cavity filled with plasma

Flow
DOIL Laser Scaling