Fundamental Mechanisms, Predictive Modeling, and Novel Aerospace Applications of Plasma Assisted Combustion

AFOSR MURI Review Meeting

Andrey Starikovskiy
Princeton University

November 9, 2011
Main Tasks

Thrust 1. Experimental studies of nonequilibrium air-fuel plasma kinetics using advanced non-intrusive diagnostics

- Task 1: Low-to-Moderate (T=300-800 K) temperature, spatial and time-dependent radical species concentration and temperature measurements in nanosecond pulse plasmas in a variety of fuel-air mixtures pressures (P=0.5-5 atm), and equivalence ratios
- Task 4: Moderate-to-high (T=800 – 1800 K) temperature PAC oxidation kinetics in Discharge Shock Tube Facility at pressures up to 10 bar
- Task 5: PAC oxidation and combustion initiation at high pressure, high temperature conditions

Thrust 2. Kinetic model development and validation

- Task 8: Development and validation of a predictive kinetic model of non-equilibrium plasma fuel oxidation and ignition
- Task 9: Mechanism Reduction and Dynamic Multi-time Scale Modeling of Detailed Plasma-Flame Chemistry

Thrust 3. Experimental and modeling studies of fundamental nonequilibrium discharge processes

- Task 10: Characterization and Modeling of Nanosecond Pulsed Plasma Discharges

Thrust 4. Studies of diffusion and transport of active species in representative two-dimensional reacting flow geometries

- Task 13: Ignition and flameholding in high-speed non-premixed flows
- Task 14: High Fidelity Modeling of Plasma Assisted Combustion in Complex Flow Environments
Main Tasks

Thrust 1. Experimental studies of nonequilibrium air-fuel plasma kinetics using advanced non-intrusive diagnostics

- Task 1: Low-to-Moderate (T=300-800 K) temperature, spatial and time-dependent radical species concentration and temperature measurements in nanosecond pulse plasmas in a variety of fuel-air mixtures pressures (P=0.5-5 atm), and equivalence ratios
- Task 4: Moderate-to-high (T=800 – 1800 K) temperature PAC oxidation kinetics in Discharge Shock Tube Facility at pressures up to 10 bar
- Task 5: PAC oxidation and combustion initiation at high pressure, high temperature conditions

Thrust 2. Kinetic model development and validation

- Task 8: Development and validation of a predictive kinetic model of non-equilibrium plasma fuel oxidation and ignition
- Task 9: Mechanism Reduction and Dynamic Multi-time Scale Modeling of Detailed Plasma-Flame Chemistry

Thrust 3. Experimental and modeling studies of fundamental nonequilibrium discharge processes

- Task 10: Characterization and Modeling of Nanosecond Pulsed Plasma Discharges

Thrust 4. Studies of diffusion and transport of active species in representative two-dimensional reacting flow geometries

- Task 13: Ignition and flameholding in high-speed non-premixed flows
- Task 14: High Fidelity Modeling of Plasma Assisted Combustion in Complex Flow Environments
Major International Collaborations and International Projects

Nickolay Aleksandrov (MIPT, Russia)
Sergey Pancheshnyi (NEQLab, Netherlands)
Svetlana Starikovskaya (LPP, France)

PROJECTS:
PARTNER UNIVERSITY FUND “Physics and Chemistry of Plasma-Assisted Combustion” (Princeton-LPP)

PUBLICATIONS

BOOKS

Aeronautics and Astronautics. Edited by: Max Mulder; TUDelft, The Netherlands.

 http://www.intechopen.com/books/show/title/aeronautics-and-astronautics

 http://www.intechopen.com/books/show/title/aeronautics-and-astronautics

PATENTS

IS Engines Ignition System

• A.Nikipelov, A.Rakitin, S.Panchesnyi, A.Starikovskiy An ignition method, an ignition plug and an engine using an ignition plug.
PUBLICATIONS

JOURNAL PAPERS

Review

Kinetics

Plasma-Assisted Detonation

Physics of Pulsed Discharges

PAC: New Dimensions in Combustion

- P, atm:
 - 0.02
 - 1
 - 40

- T, K:
 - 250 K
 - 2500 K

- S/I:
 - 0.1
 - 3.0

- B/S:
 - 0.1
 - 1
 - 3
 - 0.3

- E/n:
 - 10

- $\phi$$^+$
 - 3.0

- P, atm:
 - 40

- E/n:
 - 10
Electron Energy Distribution in Discharge Plasmas

\[\text{N}_2 : \text{O}_2 : \text{H}_2 = 4:1:2 \]
Plasma Assisted Ignition at Low \(E/n \)

Energy Cost of Radicals Production at Different Nitrogen Concentrations

Low E/n
- \(\text{O}_2(1\text{D}) + \text{H} = \text{OH} + \text{O} \)
- \(\text{O}_2(1\text{D}) + \text{H} = \text{O}_2 + \text{H} \)
- \(\text{O}_2(1\text{D}) + \text{H}_2 = \text{O}_2 + \text{H}_2 \)

High E/n
- \(\text{O}_2 + \text{e} = \text{O} + \text{O} + \text{e} \)
- \(\text{O}_2 + \text{N}_2(\text{A,B,C...}) = \text{O} + \text{O} + \text{N}_2 \)

E/n ~ 6 Td
- 0.98 eV
- 1.63 eV

E/n ~ 300 Td
- 8.4 eV

Radical's Production Cost
- e-impact and N\textsubscript{2} * quenching
- O\textsubscript{2}(1\Delta), no quenching
- O\textsubscript{2}(1\Delta), quenching by H\textsubscript{2}
- O\textsubscript{2}(1\Delta), quenching by CH\textsubscript{4}
Electron Energy Distribution in Discharge Plasmas

\[\text{N}_2 : \text{O}_2 : \text{H}_2 = 4:1:2 \]
Chemical Reactions with Excited Reagents

\(AB(v) + C = A + BC(w) \)

Rate constant from modified \(\alpha \)-model
(Starikovskii, Lashin 1996)

\[\frac{K(T_{vib}, T_h)}{k(T_h)} \]

\(T_{vib}/T_{tr} \)

Graphs:

1. \(H_2(v) + O = H + OH \)
2. \(H_2(v) + OH = H_2O + H \)

\(H_2(v=1) + O = OH(w=1) + H \) \hspace{1cm} (R1)

\(H_2(v=0) + O = OH(w=0) + H \) \hspace{1cm} (R2)

\(\frac{k_{R1}}{k_{R2}}_{\text{exp}} = 2600 \) (O’Neal, Benson 1973);

\(\frac{k_{R1}}{k_{R2}}_{\text{theor}} = 2750 \)
Kinetics. Influence of Vibrational Excitation

Distribution Of Vibrational-Excited Components

H_2
O_2

H_2O (defomational mode)
OH

![Graph showing the distribution of vibrational-excited components with vibrational excitation on and off.](image-url)
Electron Energy Distribution in Discharge Plasmas

\[\text{N}_2 : \text{O}_2 : \text{H}_2 = 4:1:2 \]

Energy loss fraction

E/N, Td
Radicals Production in Discharge
CH_4-containing mixture
Ignition Delay Time: Methane-Containing Mixture

![Graph showing ignition delay time for CH₄ mixtures](chart.png)
Electron Energy Distribution in Discharge Plasmas

\[\frac{N_2}{O_2} : \frac{H_2}{} = 4:1:2 \]

Energy loss fraction

\[\frac{E}{N} , T_d \]
Mechanism of Fast Heating in Discharge Plasmas (High E/n)

High (> 200 Td) E/N:

electron-ion and ion-ion recombinati

\[e + O_2^+(M) \rightarrow O + O^*(M) + \Delta E \]

\[O_2^- + O_2^+ + M \rightarrow 2O_2 + M + \Delta E \]
Mechanism of ultra-fast heating in a nonequilibrium weakly-ionized air discharge plasma in high electric fields
Mechanism of fast heating in discharge plasmas (low \(E/N\))

Air

Low (< 20 Td) \(E/N\):
- elastic scattering
- rotational excitation
Mechanism of fast heating in discharges (moderate E/N)

Moderate (20 - 200 Td) E/N:

Popov (2001)

heating \rightarrow 28 % of power spent on $N_2^* + O_2^*$

$e + O_2 \rightarrow e + 2O + \Delta E$

$e + N_2 \rightarrow e + N_2^*(A, B, C, a', ...)$

$N_2^*(A, B, C, a', ...) + O_2 \rightarrow N_2 + 2O + \Delta E$

$O(^1D) + N_2 \rightarrow O + N_2 + \Delta E$ \quad k \sim 10^{-10} cm3/s
Fractional electron power transferred into heat via various channels in dry air at $E/N = 10^3$ Td

<table>
<thead>
<tr>
<th>Channel</th>
<th>$n_{ef} = 10^{14}$ cm$^{-3}$</th>
<th>$n_{ef} = 10^{15}$ cm$^{-3}$</th>
<th>$n_{ef} = 10^{14}$ cm$^{-3}$</th>
<th>$n_{ef} = 10^{15}$ cm$^{-3}$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$p = 20$ Torr</td>
<td>$p = 20$ Torr</td>
<td>$p = 1$ atm</td>
<td>$p = 1$ atm</td>
</tr>
<tr>
<td>Lower excited N$_2$ states and dissociation by e-impact</td>
<td>10.9</td>
<td>10.1</td>
<td>8.3</td>
<td>9.1</td>
</tr>
<tr>
<td>Higher excited N$_2$ states</td>
<td>11.1</td>
<td>10.7</td>
<td>11.2</td>
<td>12.8</td>
</tr>
<tr>
<td>Ion-molecule reactions</td>
<td>3.9</td>
<td>1.6</td>
<td>8.0</td>
<td>6.1</td>
</tr>
<tr>
<td>Electron-ion recombination</td>
<td>10.8</td>
<td>9.1</td>
<td>7.6</td>
<td>10.7</td>
</tr>
<tr>
<td>Ion-ion recombination</td>
<td>0.5</td>
<td>0.1</td>
<td>20.6</td>
<td>12.6</td>
</tr>
<tr>
<td>Total</td>
<td>37.2</td>
<td>31.5</td>
<td>55.7</td>
<td>51.3</td>
</tr>
</tbody>
</table>
Mechanism of fast heating in discharge plasmas (high E/N)

- Electron-ion and ion-ion recombination kinetics

High (> 200 Td) E/N:

$$e + O_2^+ \rightarrow O + O^* + \Delta E$$
$$O_2^- + O_2^+ + M \rightarrow 2O_2 + M + \Delta E$$
$$e + O_4^+ \rightarrow O_2 + O_2 + \Delta E$$
Difference between the Models

Popov (2011)

\[\begin{align*}
N^+ + e & \rightarrow N_2(C^3Π_u) + N_2 \\
O_2^+ + e & \rightarrow O(3P) + O(3P, 1D) \\
O^+_2 + e & \rightarrow O(3P) + O(3P, 1D) + O_2 \\
O^-_2 + O^+_2 + O_2 & \rightarrow 2 \cdot O + 2 \cdot O_2 \\
O^-_2 + O^+_4 + O_2 & \rightarrow 2 \cdot O + 3 \cdot O_2 \\
O^-_4 + O^+_2 + O_2 & \rightarrow 2 \cdot O + 3 \cdot O_2 \\
O^-_4 + O^+_4 + O_2 & \rightarrow 2 \cdot O + 4 \cdot O_2
\end{align*} \]

Aleksandrov & Starikovskiy (2010)

\[\begin{align*}
e + N_2^+ & \rightarrow N + N \\
O_2^+N_2 + e & \rightarrow O_2 + N_2 \\
A^+_2 + e + e & \rightarrow A_2 + e \\
N^+ + e & \rightarrow N_2 + N_2 \\
O^+_2 + e & \rightarrow O(3P) + O(3P, 1D) \\
O^+_4 + e & \rightarrow O_2 + O_2 \\
O^-_2 + O^+_2 + O_2 & \rightarrow O_2 + 2 \cdot O_2 \\
O^-_2 + O^+_4 + O_2 & \rightarrow O_2 + 3 \cdot O_2 \\
O^-_4 + O^+_2 + O_2 & \rightarrow O_2 + 3 \cdot O_2 \\
O^-_4 + O^+_4 + O_2 & \rightarrow O_2 + 4 \cdot O_2
\end{align*} \]
Evolution in Time of Total Fractional Electron Power Transferred into Heat in Dry Air

$E/N=1000 \text{ Td, } p=20 \text{ Tor}$

$E/N=1000 \text{ Td, } p=1 \text{ atm}$

$N_2^+ + e \rightarrow N + N$

$O^+_2 + e \rightarrow O^{(3P)} + O^{(3P, 1D)}$

$O_2^+ N_2 + e \rightarrow O_2 + N_2$

$N^+_4 + e \rightarrow N_2 + N_2$

$O^+_4 + e \rightarrow O_2 + O_2$
Measurements of Ozone Production in SDBD

Ozone Concentration, cm$^{-3}$

Time, sec

P = 736 Torr
U = 14.2 kV

HV pulse

Discharge chamber
Back-current shunt
Tektronix TDS3054
Pulsed Generator
PC

Camera PicoStar HR 12

Sliding discharge: thickness measurements. a) 760 torr; 18 kV; top view. b) 220 torr; 18 kV; front view. c) 925 torr; 18 kV; front view. Picture dimensions are 10×7 mm.
Calculations of Ozone Production in SDBD

\[
\begin{align*}
N_2^+ + e & \rightarrow N + N \\
O_2^+ + e & \rightarrow O(3P) + O(3P, 1D) \\
O_2 + N_2 + e & \rightarrow O_2 + N_2 \\
N_4^+ + e & \rightarrow N_2 + N_2 \\
O_4^+ + e & \rightarrow O_2 + O_2
\end{align*}
\]
Plasma volume measurements. $U = 28$ kV, pulse duration 25 ns, rise time 7 ns. Air, $P = 1$ atm

Side View

- Direct Plasma Emission
- Reflection from the Surface

Top View

- Cathode-directed discharge
- Anode-directed discharge
Rotational Temperature Measurements

\[dt = 1 \, \mu s \]

\[f(j, 0-0) \]

\[\lambda, \text{ nm} \]

\[N_2 \text{ second positive system emission, 337.1 nm} \]
Fractional Electron Power Transferred into Heat in Different Mixtures

\[\text{N}_2:\text{O}_2 = 1:1 \]

\[\text{O}_2 + \text{N}_2 + e \rightarrow \text{O}_2 + \text{N}_2 \]

\[\text{N}^+ + e \rightarrow \text{N}_2 + \text{N}_2 \]

\[\text{O}^+ + e \rightarrow \text{O}_2 + \text{O}_2 \]
Air and Oxygen Plasma Recombination at Low Temperatures
Dynamics of electrons concentration at $P=1$ - 10 Torr, $T=295$ K

Nitrogen

N_2, $U=+11$ kV, $p=1$-10 torr

Carbon Dioxide

CO_2, $U=+11$ kV, $p=1$-10 torr

Air

O_2, $U=+11$ kV, $p=1$-10 torr

$N_2:O_2=4:1$, $U=+11$ kV, $p=1$-10 torr
Decay of Initial Electron Density

T = 295 K
Decay of Initial Electron Density
O2 and Air

The evolution in time of the electron density in the air afterglow for (a) 3.5 and (b) 5 Torr.

\[
\begin{align*}
O_2^+ + e + e &= O_2 + e \\
O_2^+ + e + e &= O + O + e
\end{align*}
\]

Curve 2: three-body coefficient, \(k_3 = aT_e^{-n}, \) \(n = 9/2, \)
Curve 3: \(k_3 \) value increased by an order of magnitude, \(n \) being the same,
Curve 4: \(k_3 \) value increased by an order of magnitude and \(n = 2. \)

Higher density of states near the threshold for molecular ions
Decay of Initial Electron Density - Air

The effective electron-ion recombination coefficient in air, O₂ and N₂ as a function of pressure.

The coefficient was determined:
(a) the beginning of the afterglow
(b) the instant at which \(n_e \) decreased to \(2 \times 10^{11} \) cm\(^{-3} \)
Kinetics of Plasma Recombination

(R1) \(e + N_2^+ \rightarrow N + N \)
(R2) \(e + O_2^+ \rightarrow O + O \)
(R3) \(e + N_4^+ \rightarrow N_2 + N_2(C) \)
(R4) \(e + O_4^+ \rightarrow O_2 + O_2 \)
(R5) \(e + O_2^+ N_2 \rightarrow O_2 + N_2 \)
(R6) \(e + A_2^+ + e \rightarrow A + A + e \)
(R7) \(N_2^+ + O_2 \rightarrow N_2 + O_2^+ \)
(R8) \(N_2^+ + 2N_2 \rightarrow N_4^+ + N_2 \)
(R9) \(O_2^+ + 2O_2 \rightarrow O_4^+ + O_2 \)
(R10) \(O_2^+ + 2N_2 \rightarrow O_2^+ N_2 + N_2 \)
(R11) \(N_4^+ + O_2 \rightarrow 2N_2 + O_2^+ \)
(R12) \(O_2^+ N_2 + N_2 \rightarrow O_2^+ + 2N_2 \)
(R13) \(O_2^+ N_2 + O_2 \rightarrow O_4^+ + N_2 \)
(R14) \(e + 2O_2 \rightarrow O_2^- + O_2 \)

\[
\frac{dT_e}{dt} = -\nu_e (T_e - T) - \frac{2}{3} T_e^2 \left(\frac{dk_3}{dT_e} n_e n_i + \sum_j \frac{dk_{2j}}{dT_e} n_{ij} \right)
\]
Kinetics of Plasma Recombination

(R1) $e + N_2^+ \rightarrow N + N$
(R2) $e + O_2^+ \rightarrow O + O$
(R3) $e + N_4^+ \rightarrow N_2 + N_2(C)$
(R4) $e + O_4^+ \rightarrow O_2 + O_2$
(R5) $e + O_2^+ N_2 \rightarrow O_2 + N_2$
(R6) $e + A_2^+ + e \rightarrow A + A^+ + e$
(R7) $N_2^+ + O_2 \rightarrow N_2 + O_2^+$
(R8) $N_2^+ + 2N_2 \rightarrow N_4^+ + N_2$
(R9) $O_2^+ + 2O_2 \rightarrow O_4^+ + O_2$
(R10) $O_2^+ + 2N_2 \rightarrow O_2^+ N_2 + N_2$
(R11) $N_4^+ + O_2 \rightarrow 2N_2 + O_2^+$
(R12) $O_2^+ N_2 + N_2 \rightarrow O_2^+ + 2N_2$
(R13) $O_2^+ N_2 + O_2 \rightarrow O_4^+ + N_2$
(R14) $e + 2O_2 \rightarrow O_2^- + O_2$

The evolution in time of the frequencies for the main processes of electron loss for 5 Torr in air (a) and for 8 Torr in O_2 (b).
Plasma-Assisted Ignition at High Pressures
Rapid Compression Machine: High-Pressure, Low-Temperature

a) ICCD images of the discharge at 1 atm dry air. Negative polarity of the high-voltage electrode, 22 kV, 25 ns duration, $f = 40$ Hz [Kosarev et al, 2009].

b) Camera gate is 0.5 ns. Single pulse sliding DBD ignition of C_2H_6:O_2=2:7 mixture at 1 bar and ambient temperature [Sagulenko et al, 2009].
Propane
Surface DBD
E < 50mJ
PAC at High Pressure: ER = 0.4

T2 = 794 K
P2 = 32.0 bar

Propane
Surface DBD
E < 50mJ
High-Pressure PAC: Delay Times

HCCI 1 + EGR, $f = 1.0$, EGR = 30%. Discharge after compression.
Plasma-Assisted Ignition at High Pressures

\[
\begin{align*}
\text{CH}_4 + \text{O} & \Rightarrow \text{CH}_3 + \text{OH} \\
\text{CH}_3 + \text{OH} & \Rightarrow \text{CH}_2\text{O} + \text{H}_2 \\
\text{CH}_3 + \text{O}_2 & \Rightarrow \text{CH}_2\text{O} + \text{OH} \\
\text{CH}_3 + \text{O}_2 + \text{M} & \Rightarrow \text{CH}_3\text{O}_2 + \text{M}
\end{align*}
\]

\(T_2 = 672 \text{ K}, P_2 = 20 \text{ bar}\)

\(T_2 = 794 \text{ K}, P_2 = 32 \text{ bar}\)

Ignition delay time for modified mixtures, \(f=1.0,\ EGR=30\%\). Discharge 20ms before compression stroke.
Plasma Assisted Ignition below Self-Ignition Threshold
Problems in Low-T Combustion

Experiment: [Choi et al, 2011], H₂–air, \(\phi = 1.0\); \(P = 94\) Torr, \(T_0 = 473\) K. Pulse energy 0.5-0.8 mJ, frequency 40 kHz, \(V \sim 8.5\) cm³, \(\Delta T \sim 320\)K (\(T_i = 793\) K, \(P_i = 94\) Torr)

Kinetic model: [Choi et al, 2011] Radicals production + GRI-3.0

Experiment: [Wu et al, 2010], H₂-air; C1-C4 – air; \(\phi = 0.1\); \(P = 760\) Torr, \(T_0 = 300-800\) K. Pulse energy 10-15 mJ, \(\Delta T \sim 100\)K (\(T_i = 400-900\) K, \(P_i = 760\) Torr)

Kinetic model: [Levko et al, 2010] Radicals production + Low-Temperature Extension of Konnov

Graph:
- **H₂/air, \(P=94\) torr, \(\varphi=1.0, T=200\) C**
 - **OH LIF**
 - **Model**
 - Time, msec: 0.01, 0.1, 1, 10, 100
 - [OH], cm⁻³: 1E+11, 1E+12, 1E+13, 1E+14, 1E+15

- **Methane Eq=0.1**
 - **OH LIF, Grisch et al, Eq=0.05, a.u.**
 - Temperature: 300K, 400K, 500K, 600K, 700K, 800K
 - OH calculated, a.u.
 - Time, \(\mu\)s: 1, 10, 100, 1000
Plasma Assisted Oxidation

$P = 1\text{atm}; T = 300-800\text{ K}$
OH dynamics in lean methane-air (1) and butane-air (2) mixtures for different temperatures below self-ignition threshold. P = 1 atm. ER = 0.1
OH Dynamics: Decay Time

Models:

Influence of Vibrational Excitation on Low-Temperature Kinetics

\[\text{N}_2 + e = \text{N}_2(\text{C}^3) + e \]
\[\text{N}_2(\text{C}^3) + \text{O}_2 = \text{N}_2 + \text{O} + \text{O} \]
\[\text{O}_2 + e = \text{O} + \text{O} + e \]

\[\text{N}_2 + e = \text{N}_2(\text{v}) + e \]
\[\text{N}_2(\text{v}) + \text{HO}_2 = \text{N}_2 + \text{HO}_2(\text{v}) \]
\[\text{HO}_2(\text{v}) = \text{O}_2 + \text{H} \]

Synergetic Effect of High and Low Electric Fields
Non-Thermal Decomposition of HO$_2$

Vibrational relaxation time of N$_2$ in the mixture 3%H$_2$-air

Monomolecular decomposition rate of HO$_2$ for different vibrational temperatures
Influence of Vibrational Excitation on Low-Temperature Kinetics

Dynamics of OH concentration in the case of non-equilibrium dissociation (a) and nonequilibrium dissociation and nonequilibrium vibrational excitation (b); $T_{\text{vib}}(t=0) = 3000$ K
Influence of Vibrational Excitation on Low-Temperature Kinetics

Measured and calculated OH decay time. P = 1 atm.

a) 3%H₂ + air; b) 0.3%C₄H₁₀ + air.
Plasma Generation and Modeling.
Distributed Nanosecond Spark
Distributed nanosecond spark

- Streamer corona
- Localized spark
- Distributed spark

- 12 kV @ 100 Ohm
- 12 ns duration
- Still air
- Room temperature

- < 1 kHz
- 1 ... 10 kHz
- > 10 kHz

Exposure time 1/500 sec
(= 20 sparks at 10 kHz)
Ultra-Lean Mixtures Ignition by Plasmatron

T_{flow} 580 C

T_{flow} 400 C

T_{flow} 200 C
Transition from Streamer Corona to Distributed Spark in Air flow

100 slpm

70 slpm

distributed spark

0 slpm

localized spark

streamer corona
Plasma Channel Displacement

Two key processes, strong detachment in the channel on O atoms mainly and fast electron-ion recombination, lead to o-axis residual charge maximum formation in millisecond time range.
Plasma-Assisted Ignition at High Pressures
Lean-burn gas power generation efficiency up to 50% (Wärtsilä Engines, 2010) requires air excess ratio $\lambda > 2$

Conventional spark-plug systems ignite at $\lambda < 1.6$
Flammability Limit
Existing Plug-based Ignition Systems

• Regular spark plugs
 \[\lambda < 1.4 \]

• Regular spark plugs with thin (Iridium/Platinum) electrodes
 \[\lambda < 1.6 \]

• RF, “plasma”, etc. plugs
 \[\lambda < 1.8 \]
Distributed Nanosecond Sparks

NGK BUHZV plug
air, N2, Ar
room temperature

high-pressure discharge behavior with gas flow

4 bar
16 bar
20 bar
Distributed Spark Ignition System – Engine Tests. Honda GX160, 3.8 kW
Fuel Economy with Distributed Plasma Ignition System: $\lambda = 1$

- Fuel consumption, g/kWh for original magneto ignition
- Fuel economy percentage, distributed spark ignition compared to magneto ignition

- up 25% of fuel saving at low load
- mainly due to elimination of misfiring
Fuel Economy with Distributed Plasma Ignition System

- from 15% (high load) up 45% (low load) of fuel saving
- lean-burn operation => lower max power

Fuel economy percentage for $\lambda = 1$, distributed spark ignition compared to magneto ignition.

Fuel economy percentage for $\lambda = 2$, distributed spark ignition compared to magneto ignition.
Distributed Spark Ignition System – Engine Tests

Honda GX160

- **Engine Type**: Air-cooled 4-stroke OHV
- **Bore x Stroke**: 68 X 45 mm
- **Displacement**: 163 cm³
- **Net Power Output**: 4.8 HP (3.6 kW) @ 3,600 rpm
- **Net Torque**: 7.6 lb-ft (10.3 Nm) @ 2,500 rpm
- **Fuel System**: Carburetor
- **Compression Ratio**: 9.0 : 1

BMW/PSA Peugeot Citroën EP6DT

- **Engine Type**: straight-4 turbocharged
- **Bore x Stroke**: 77 X 85.8 mm
- **Displacement**: 1600 cm³
- **Net Power Output**: 148 HP (110 kW) @ 5,500 rpm
- **Net Torque**: 177 lb-ft (240 Nm) @ 1,400 rpm
- **Fuel System**: gasoline direct/port injection and variable valve timing
- **Compression Ratio**: 9.5:1-14 :1
Distributed Spark Ignition System
BMW/PSA Peugeot Citroën *EP6DT Engine*

Graph 1

Equation: \(\text{Std Deviation} [%] = f(\text{E.R.}), \text{IMEP}=2.8 \text{ bar}, 2000 \text{ rpm}, \text{C.R.}=10.5 \)

Graph Details:
- Y-axis: Std Deviation [%]
- X-axis: Equivalence Ratio
- Lines:
 - Blue: Std Deviation Plasma
 - Green: Std Deviation STD

Graph 4

Equation: \(\text{Std Deviation} [%] = f(\text{E.R.}), \text{IMEP}=2.8 \text{ bar}, 2000 \text{ rpm}, \text{C.R.}=14 \)

Graph Details:
- Y-axis: Std Deviation [%]
- X-axis: Equivalence Ratio
- Lines:
 - Blue: Std deviation Plasma
 - Green: Std Deviation STD
Distributed Spark Ignition System
BMW/PSA Peugeot Citroën EP6DT Engine

Std Deviation [%] = f(EGR), IMEP=2.8 bar, 2000rpm, C.R.=10.5

Std Deviation [%] = f(EGR), IMEP=10bar, 2000rpm, C.R.=10.5
Distributed Spark Ignition System
BMW/PSA Peugeot Citroën \textit{EP6DT Engine}

\begin{figure}
\centering
\includegraphics[width=\textwidth]{figure1.png}
\caption{\% of misfiring = f(E.R.), IMEP=2.8 bar, 2000 rpm, C.R.=10.5}
\end{figure}

\begin{figure}
\centering
\includegraphics[width=\textwidth]{figure4.png}
\caption{\% misfiring = f(E.R.), IMEP=2.8 bar, 2000 rpm, C.R.=14}
\end{figure}
Discharge Formation and Flame Stabilization in High Speed Flow - SCRAMJets

PAC Kinetics at High T, Low P
Physics of Pulsed Discharges
Kinetics in Nonequilibrium Plasma

Peak Voltage 224 kV
Rise Time: 0.15 ns
Duration: 0.4 ns

Pulser:
- Output voltage – 120 kV
- Load – 300 Ohm
- Peak current – 400 A
- Rise time – 1 ns
- Pulse width – 12 ns
- Maximum PRF – 1 MHz

Pac Kinetics at High T, High P

PicoStar HR ICCD camera system (LaVision GmbX) and 8-channel Berkeley Nucleonic Corp Model 575 Pulse Delay Generator.

Minimal ICCD gate ~ 80 ps
Inter-channel jitter < 50 ps
Nano (Pico) second High-Voltage Generators

The most promising scheme is based on DSRD or DRD switches

- 80% achieved efficiency “from plug”
- up to 1 GW of peak power in 1 liter
SUMMARY

Major Results
1. Model of plasma recombination in oxygen and air;
2. Model of fast energy transfer in nonequilibrium plasma;
3. Model of distributed spark formation by pulsed periodic discharge;
4. Model of nonequilibrium oxidation at low temperatures;
5. Plasma assisted ignition demonstration up to $P = 40$ atm;

Future Plans
1. High-temperature kinetics of PAC;
2. High-pressure kinetics of PAC;
3. Physics of pulsed discharges – nano- and picosecond scale;
4. Kinetics of nonequilibrium plasma – role of plasma density;
5. Plasma-assisted flame stabilization for GTEs and SCRAMJets.