Fundamental Mechanisms, Predictive Modeling, and Novel Aerospace Applications of Plasma Assisted Combustion

Walter Lempert, Igor Adamovich, Sergey Leonov, J. William Rich, and Jeffrey Sutton

David Burnette, Ben Goldberg, Zak Eckert, Suzanne Lanier, Andrew Roettgen, Ivan Shkurenkov, Zhiyao Yin

4rd MURI Annual Review Meeting
October 22-24, 2013
PAC MURI 4-year milestone: Overview of goals and approaches

Goals

• Obtain quantitative, time- and space-resolved data in well-characterized plasma assisted combustion experiments: temperature, species number densities, vibrational state populations, electric field, electron density

• Quantify the effect of plasma generated species – radicals and excited states – on fuel oxidation, ignition, combustion, and flameholding

• Elucidate detailed kinetic mechanisms, develop predictive kinetic models of nonequilibrium plasma assisted combustion processes, assess and validate the models

Approaches

• Experimental Platform I. Plane-to-plane, high repetition rate nsec pulse discharge: large-volume, premixed plasma chemical fuel oxidation and ignition at near-0-D conditions.

• Experimental Platform II. 1-D low-pressure premixed flame: effect of nonequilibrium plasmas on premixed combustion chemistry

• Experimental Platform III. Point-to-point, single-pulse nsec pulse discharge: kinetics of energy transfer among excited species (electronic and vibrational) and radicals at high energy loadings per molecule

• Kinetic modeling. Integrated model of electric discharge, plasma kinetics / chemistry, and “conventional” hydrogen / hydrocarbon chemistry mechanism
PAC MURI overarching end-of-project goal: development of predictive kinetics, realistic geometry plasma model

Overview of MURI thrusts (which we observe to merge gradually)

• Studies of nonequilibrium air-fuel plasma kinetics (Thrust 1) and fundamental nonequilibrium discharge processes (Thrust 3) using advanced non-intrusive diagnostics and predictive kinetic modeling (Thrust 2)

Kinetic model expectations

Technical

• Integrating / coupling of electric discharge model, plasma kinetics / chemistry in discharge and “early” afterglow, and “conventional” hydrogen / hydrocarbon chemistry in “late” afterglow

• Simple “canonical”, but realistic, discharge geometry (including filaments)

• Expected use: prediction of ignition delay time and temperature, flame speed, combustion products composition, based on easy-to-measure discharge parameters (voltage and current waveforms, initial composition, pressure and temperature)

Practical

• Minimal changes of the model / code between different discharge configurations; minimal turnaround time

• Accessibility to different MURI research groups; ability to model multiple PAC problems

• Thorough and extensive documentation
Example of insight given by predictive modeling

Interpretation based on experimental data alone

Interpretation using insight from non-empirical modeling
Previous Results (Year 3), Experimental Platform I:
mildly preheated H_2-air, CH_4-air, C_2H_4-air, and C_3H_8-air

- Discharge dimensions 1 cm x 2 cm x 6 cm
- Right angle quartz prism 6 cm long provides optical access to discharge

<table>
<thead>
<tr>
<th>Pressure (torr)</th>
<th>H_2-air, pulse #10</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td></td>
</tr>
<tr>
<td>300</td>
<td></td>
</tr>
<tr>
<td>500</td>
<td></td>
</tr>
</tbody>
</table>

- H_2-air, C_2H_4-air, CH_4-air, and C_3H_8-air at $T_0 = 100-300^\circ \text{C}$, $P = 50-500$ torr, $\phi = 0.03-1.2$
- Pulse repetition rate (20-25 kV peak, ~10-50 nsec), $v = 10-40$ kHz
- Diffuse, volume filling, mildly preheated plasmas at pressures up to hundreds of Torr
- Ample optical access (LIF, TALIF, CARS) for species and temperature measurements
- OH LIF absolute calibration: adiabatic burner in Hencken burner, more recently Rayleigh scattering
[OH] on centerline after a 50-pulse burst, $T_0=500$ K, $P=100$ torr: comparison with 0-D kinetic modeling (A. Konnov mechanism)

Agreement becomes worse for more complex hydrocarbons.
[OH] (LIF) and psec CARS (T, T_v (N_2)) measurements during plasma assisted ignition of H_2-air

- Threshold ignition temperature T_f ~ 700 K
- N_2 vibrational temperature remains quite low
- Not enough energy loading per molecule, per pulse
- Use pin-to-pin discharge (Platform III) to enhance it
- This provides far more stringent test of the model

T_0=500 K, P=92 torr, \phi=0.4, \nu=10 kHz, 120 pulses

- [OH], T by OH LIF (Proc. Comb. Symp. 2013)
 - 0-D model: good agreement with measured [OH] at the end of the burst, during ignition

- T, T_v (N_2) by psec CARS (Comb. Flame 2013)
 - Measured temperature in excellent agreement with 0-D model predictions from previously published work
Predictive kinetic modeling of nonequilibrium fuel-air plasmas: model overview

- Nonequilibrium plasma model / code used as a starting point: non-PDPSIM (developed by M. Kushner, U. Michigan), widely used in low-temperature plasma community, well-documented

- Quasi-1-D and 2-D (plane, axisymmetric) geometries

- Poisson equation for the electric field: predict electric field in plasma, cathode voltage fall

- Boltzmann equation for EEDF (experimental cross sections): predict rates of electron impact excitation, dissociation, and ionization processes

- Charged species equations (ionization, recombination, attachment, detachment processes, ion-molecule reactions): predict electron density in plasma

- Excited neutral species equations (electron impact excitation, non-reactive and reactive quenching): predict contribution to radical species formation

- Master equation for N₂ (X,v) populations; vibration-translation (V-T), vibration-vibration (V-V) processes, vibrational-chemistry (V-Chem) enhancement of reaction rates

- Neutral species reactions: fuel-air air chemistry, enhanced by radical production in plasma

- Coupling between chemistry, transport processes (diffusion, conduction), and flow

* Synergy with

AFOSR BRI “Nonequilibrium Molecular Energy Coupling and Conversion Mechanisms for Efficient Control of High-Speed Flow Fields” (M. Berman)

DOE Plasma Science Center “Predictive Control of Plasma Kinetics: Multi-Phase and Bounded Systems”
Gaining confidence in model predictions (validation):
I. Electric field and electron density

Key plasma parameters controlling coupled energy and its partition among different channels (elastic, vibrational, electronic, dissociation, ionization):

• Electric field
• Electron density
• Electron temperature

The model has to predict them accurately, given the applied voltage waveform.

Model validation requires experimental data on electric field (4-wave mixing), electron density, and electron temperature (Thomson scattering)
Experimental and measured electric field in a plane-to-plane nsec pulse discharge in N\textsubscript{2}

- Experiment (Ruhr Universität Bochum, Germany, nsec pulse 4-wave mixing): N\textsubscript{2}, P=0.25 bar, 1.2 mm gap, pulse repetition rate 2 kHz
- Field in plasma before breakdown follows applied voltage, \(E=U/d \)
- Field in plasma after breakdown is significantly lower, significant cathode voltage fall
- Model predictions for time-resolved E-field, pulse current: good agreement with experiment
E/N in the plasma in a plane-to-plane nsec pulse discharge in N₂

- E/N in plasma after breakdown is reduced considerably due to the cathode fall.
- Significant effect on energy partition among N₂ energy modes (lower E/N favors vibrational excitation instead of electronic excitation, dissociation).
- Predicted cathode fall ($U_c \approx 300$ V) at steady-state is close to normal cathode fall: steady-state current density is fairly low, $j \approx j_n \approx 10$ A/cm².
- Cathode fall increases significantly with current density (point-to-point discharge, $j \sim 10^3$ A/cm²).
Sub-Nsec Resolution Electric Field Measurement by CARS-like Four Wave Mixing

Energy Level Diagram for E-Field CARS

ω_p ω_S ω_{AS}

IR CARS

$E_{IR} = \chi_{IR} E_{Pump} E_{Stokes} E_{External}$

$E_{CARS} = \chi_{CARS} E_{Pump} E_{Stokes} E_{Pump}$

$E_{IR} = \left(\frac{\chi_{IR}}{\chi_{CARS}} \right) * \left(\frac{E_{External}}{E_{Pump}} \right)$

$E_{External} = \left(\frac{\chi_{CARS}}{\chi_{IR}} \right) \sqrt{\left(\frac{I_{IR} I_{Pump}}{I_{CARS}} \right)}$

• “E-Field CARS” is a 4-wave mixing process

• CARS probe beam is replaced by an external electric field, which is at essentially zero frequency. This creates an IR “CARS” signal at the vibrational frequency.

• The physical origin of this signal is the dipole induced by the external field

• Phase Matching for E-Field CARS is collinear

*V.P. Gavrilenko, JETP Lett. 1992
Electric field measurements in a point-to-point nsec pulse discharge in H₂ (psec 4-wave mixing)

- H₂, P=0.21 bar, discharge between two spherical electrodes, 5 mm gap, pulse repetition rate 10 Hz
- Estimated current density much higher than in RUB experiments, j ~ 10³ A/cm²
- Time resolution 0.2 nsec (in the present experiment, 0.5 nsec “time bins” are used)
- Absolute calibration and modeling calculations are underway
Thomson scattering electron density measurements in diffuse filament, point-to-point discharge

** Acknowledgement: U. Czarnetzki, Ruhr-Universität Bochum
First test, helium: plasma images, current and voltage waveforms

Helium, 200 torr, 10 mm gap, camera gate 150 nsec
Left: single pulse; right: 100-pulse average
Absolute calibration using N\textsubscript{2} rotational Raman spectra

No discharge

Used for Thomson scattering calibration

Laser energy 500 mJ/pulse

6 minutes accumulation time
Sample Thomson scattering spectra during and after discharge pulse (t=0-250 nsec)

- Helium, 200 torr
- Peak voltage 7 kV
- Peak current 60 A
- Coupled energy ~18 mJ/pulse
- Pulse repetition rate 90 Hz
- t=0 beginning of pulse current rise
- Laser energy 500 mJ/pulse
- 6 minutes accumulation (~3200 shots)
Time evolution of Thomson scattering spectra during the discharge pulse

- Breakdown at $t=0$
- End of pulse $t \approx 100$ nsec
Experimental and predicted electron density and electron temperature in helium

- Breakdown may be not fully resolved in the experiment (time resolution ±15 nsec)
- High electron temperature (up to ~5 eV) during breakdown onset
- High peak electron density during the pulse, \(n_e \sim 3 \cdot 10^{15} \text{ cm}^{-3} \), followed by rapid decay in the afterglow
- "Residual" electron temperature in the afterglow (maintained by superelastic processes) \(T_e \sim 0.3-0.4 \text{ eV} \)
2-D contour plots of predicted electron density and electron temperature in helium

- Gate 150 nsec (entire pulse)

- Ongoing work: electron density measurements in molecular gases (H₂, N₂, air)

- Rotational Raman spectra are “in the way” (except for H₂), but ...

- High electron density, \(\sim 10^{14} \sim 10^{15} \) cm\(^{-3} \) helps inferring \(n_e \), \(T_e \) from the underlying “envelope”
Point-to-point, single-pulse nsec pulse discharge: high energy loadings per molecule (~0.1-0.5 eV/molecule), modest temperatures (from a few tens of K up to a few hundred K), fairly large dimensions (10 mm gap, 2-3 mm diameter)

- **Diagnostics:** psec CARS for $T, T_v(N_2)$
- **TALIF, LIF:** absolute N, O, NO number densities
O, NO, N LIF / TALIF experiment: Schematic and calibration

N, O, and NO Can Be Measured Without Changing the Dye

N calibrated using Kr

O calibrated using Xe

NO calibrated using 100 ppm NO/N₂

N calibrated using Kr

\[N_O = \frac{S_O}{S_{Xe}} \cdot g_{ND} \cdot \frac{a_{21}(Xe)}{a_{21}(O)} \cdot \frac{\sigma^{(2)}(Xe)}{\sigma^{(2)}(O)} \cdot \left[\frac{\nu_O}{\nu_{Xe}} \right]^2 \cdot \frac{1}{F_0(T)} \cdot N_{Xe} \]
Quasi-1-D discharge model in N\textsubscript{2}, P=100 torr: Electric field and electron density in the filament

- Significant cathode fall ($U_c \approx 1.5 \text{ kV}$ at $j \sim 300 \text{ A/cm}^2 \gg j_n$): fairly low electric field in plasma ($E/N \approx 30 \text{ Td}$) after breakdown

- High electron number density, $n_e \sim 10^{14} \text{ cm}^{-3}$: electron-electron collisions are important for energy partition among internal energy modes
• $N_2(v=1)$ and T_{v01} rise in the afterglow due to “downward” N_2-N_2 V-V exchange

• Temperature rise is fairly low ($\Delta T \approx 50$ K)

• Very good agreement between the experiment and the model predictions
Vibrational excitation and temperature rise are predicted fairly accurately.

$\text{N}_2(X^1\Sigma^+_g, v) + O \rightarrow \text{NO} + N$ channel appears unlikely: $\text{N}_2(X)$ vibrational excitation (measured by CARS) is fairly weak.

$[\text{NO}]$ reproduced only when formation processes via multiple N_2 excited electronic states, $\text{N}_2^* + O \rightarrow \text{NO} + N$, are incorporated.

$[\text{NO}]$ reduction is nearly the same as initial $[\text{N}]$, $\sim 10^{15}$ cm$^{-3}$:
$\text{NO} + N \rightarrow \text{N}_2(v) + O$ reaction.

Air, P=100 torr:
“Full set” of data (T, $[\text{N}_2(v)]$, $[\text{N}]$, $[\text{O}]$, $[\text{NO}]$, NO PLIF)
N, O, and NO predictions: incorporating an extended set of N_2^* excited electronic states is critical

\[
N_2^* + O \rightarrow NO + N
\]

\[
k[A^3Σ] = 7 \cdot 10^{-12} \text{ cm}^3/\text{s},
\]

\[
k[\text{other states}] = 3 \cdot 10^{-10} \text{ cm}^3/\text{s}
\]

N loss due to reverse Zel’dovich reaction

Drop in [NO] is close to initial [N]

NO measurements shortly after the pulse (~1 μs) are desirable
Adding H\textsubscript{2} increases NO decay time by a factor of \(\sim 100\), reduces N atoms
NO in air, C₂H₄-air:
P=40 Torr, high energy loading (~0.5 eV/molecule)

Similar effect:
Adding fuel C₂H₄ increases NO decay time by a factor of ~10, reduces N atoms
NO in air and H_2-air: comparison of data and modeling calculations

Air
$\phi = 0.14$
$\phi = 0.41$

Longer NO decay primarily due to “3rd Zel’dovich” reaction, $\text{N} + \text{OH} \rightarrow \text{NO} + \text{H}$

Peak NO, decay rate in air overpredicted
Time evolution of electron density distribution during breakdown.

N_2, 100 Torr, 4 mJ/pulse, $V_{\text{peak}}=12$ kV, $I_{\text{peak}}=10$ A, $\tau=200$ nsec, $(n_e)_{\text{peak}} = 0.5 \cdot 10^{15}$ cm$^{-3}$
2-D Poisson equation / Boltzmann equation / master equation model development: $N_2(v)$ populations

Time evolution of $N_2(v=0-8)$ level populations on the centerline after the discharge pulse
Gaining confidence in model predictions (validation): III. H$_2$-O$_2$-Ar plasma chemistry, point-to-point discharge

500-pulse accumulation

Electrode gap: 11.7 mm, laser beam 4.7 mm from high voltage electrode
H atom TALIF during and after 50-pulse burst
2% H_2 – Ar, $P=40$ torr

During the burst (5 µs after each pulse)

<table>
<thead>
<tr>
<th>1st</th>
<th>2nd</th>
<th>5th</th>
<th>10th</th>
<th>20th</th>
<th>50th</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

After the burst

<table>
<thead>
<tr>
<th>50 µs</th>
<th>200 µs</th>
<th>500 µs</th>
<th>1 ms</th>
<th>2 ms</th>
<th>5 ms</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Flow
H atom TALIF and OH LIF during 50-pulse burst, 2\% H_2 - 20\% O_2 - Ar, P=40 torr
H atom TALIF and OH LIF after 50-pulse burst, 2% H₂ - 20% O₂ – Ar, P=40 torr
OH PLIF image
2% H₂ - 20% O₂ - Ar

5th pulse

HV

GND

2 mm
OH PLIF image
2% H₂ - 20% O₂ - Ar

50th pulse

HV

GND

2 mm
OH PLIF image
2% H₂ - 20% O₂ - Ar

500 µs after
Temperature measurements by Rayleigh scattering at 205 nm:
(a) 2% H₂ – Ar, (b) 20% O₂ – Ar, (c) 2% H₂ – 20% O₂ – Ar

Much lower temperature when O₂ is added:
Significant energy storage in O atoms

Higher temperature over a large volume in presence of H₂ and O₂:
Energy release during oxidation
Centerline temperatures:
(a) 2% H_2 – Ar, (b) 20% O_2 – Ar, (c) 2% H_2 – 20% O_2 – Ar

During the burst

Much lower T when O_2 is added:
Significant energy storage in O atoms

After the burst

Higher centerline T, wider hot region
in presence of H_2 and O_2:
Energy release during oxidation
2\% \text{H}_2 - 20\% \text{O}_2 - \text{Ar}, \textbf{during} 50\text{-pulse burst}

Absolute $[\text{H}]$

Nearly complete H_2 dissociation by the end of the burst: $[\text{H}]_{\text{max}} = 3 \cdot 10^{16} \text{ cm}^{-3}$ at $T=500 \text{ K}$

Relative $[\text{OH}]$
2% H₂ - 20% O₂ – Ar, after 50-pulse burst

Absolute [H]

Nearly complete H₂ dissociation by the end of the burst: \([H]_{\text{max}} = 3 \cdot 10^{16} \text{ cm}^{-3} \) at T=500 K

Relative [OH]
Radial profiles of temperature and relative [H], [OH]
2% H\textsubscript{2} - 20% O\textsubscript{2} - Ar

50th pulse

500 µs after

Loss of H atoms, OH accumulation at low temperatures in the periphery:

\[H + O_2 + M \rightarrow HO_2 + M \]

\[O + HO_2 \rightarrow OH + O_2 \]

“Diffuse filament” discharge: significant potential for studies of coupled kinetics and transport over a wide T, P range
Kinetic modeling calculations (in progress):

2\% H\textsubscript{2} - Ar

- Models overpredicts temperature, underpredicts [H]: a key H\textsubscript{2} dissociation channel is missing
- In the experiment, nearly all H\textsubscript{2} is dissociated by the end of the burst

Centerline, during and after burst

Dominant processes:
- Ar + e → Ar* + e
- H\textsubscript{2} + e → H + H + e
- H\textsubscript{2} + Ar* → H + H + Ar
- H + H + M → H\textsubscript{2} + M

Radial diffusion

Radial distributions 500 \(\mu \)s after burst
Effect of Non-Equilibrium Plasmas on Premixed Combustion Chemistry

Goal: Examine the effects of non-equilibrium plasma on radical species concentrations in a 1D low-pressure flame/plasma chamber

- McKenna burner; Low-pressure 1D flame (20-30 Torr)
- Temperature and species vary with distance above burner
- Porous HV electrode (40 mm above burner) – no flow field disturbance (burner is ground)

- Peak voltage = 3 kV
- Duration (FWHM) = 170 ns
- Coupled energy ~ 1 mJ/pulse

- Peak voltage = -14 kV
- Duration (FWHM) = 7 ns
- Coupled energy ~ 3 mJ/pulse
Experimental Facility
OH Laser-Induced Fluorescence Measurements

Plasma On
(200 or 800 Pulses)

\[\Delta t_{PL} \approx 8 \text{ us} \]

Laser Pulse

\[\Delta t_p \approx 100 \text{ ms} \]

\[\Delta t_L \approx 100 \text{ ms} \]
CH$_4$/O$_2$/N$_2$ FLAME CH* EMISSION ($\phi = 0.62$)

- PLASMA OFF
- PLASMA ON (FID; 40 kHz, 200 pulses)

Burner Surface: 2 mm
Temperature Measurements

Spatially-resolved temperature measurements using five-line OH thermometry

Discrete temperature data is fit to

\[T = A + B[1 - \exp(C H_{AB} D)] + E H_{AB}^2 \]

\(H_{AB} = \text{Height Above Burner (mm)} \)
A-E are determined via least-squares fitting
OH Mole Fraction Measurements
Placed on quantitative scale with OH absorption measurements

Effect of Plasma on OH:
Most significant at low ϕ

Ongoing Work:
Kinetic modeling of excess OH generation in the plasma

Future Work:
O atom Measurements
Discharge power (time-averaged, burst duty cycle 1/20): \(\approx 2.5\% \) of heat of combustion

Discharge power (during burst): \(\approx 50\% \) of heat of combustion

Both upper bound estimates (due to a large volume occupied by plasma)

Predicted temperature rise (\(\approx 150 \text{ K} \)) close to the experimental result

Modest temperature rise due to greater convection and conduction heat loss

Contribution of both Joule heating and electron impact processes into [OH] rise
PAC MURI 4-year milestone: main achievements

• Time-resolved electric field measurements in “diffuse filament” nsec pulse discharge in H₂, with sub-nsec resolution (4-wave mixing - CARS)

• Time-resolved electron density and electron temperature measurements in “diffuse filament” nsec pulse discharge in He (Thomson scattering); significant progress toward measurements in molecular gases

• Time-resolved T, N₂(v) (psec CARS), absolute [O], [N], and [NO] (TALIF / LIF) measurements in “diffuse filament” nsec pulse discharge in air, H₂-air, and C₂H₄-air; Kinetic modeling - dominant kinetic mechanism of NO formation in air and fuel-air plasmas

• Demonstration of use of a new experimental platform, well characterized “diffuse filament” transient reactor for time-resolved, spatially-resolved studies of low-T fuel-air kinetics

• Time-resolved, spatially resolved measurements of temperature (Rayleigh scattering), absolute [H] and [OH] (TALIF / LIF) in H₂-Ar and H₂-O₂-Ar; measurements in CH₄-O₂-Ar underway

• Spatially- and time-resolved temperature, absolute [OH] (LIF) measurements in lean low-pressure flames, with nsec pulse plasmas coupled directly to reaction zone: CH₄, C₂H₄, H₂ flames: quantifying effect of radicals on reaction zone location

• Considerable progress in development and validation of 2-D, nonequilibrium, reacting plasma chemistry / combustion chemistry model
PAC MURI 4-year milestone: plan for Year 5

- Stable plasma generation in preheated, high-pressure fuel-air mixtures: \(T_0 = 500-600 \text{ K}, \ P = 1 \text{ bar}, \ H_2 - \text{ air}, \ CH_4 - \text{ air}, \ C_2H_4 - \text{ air}, \ C_3H_8 - \text{ air} \) (Platforms 1 and 2)

- Time-resolved, spatially resolved temperature measurements (Rayleigh scattering), absolute [OH] measurements (OH LIF), absolute [O], [H] measurements (TALIF) in \(H_2, CH_4, C_2H_4, \text{ and } C_3H_8 \) mixtures, over a wide range of equivalence ratios (Platforms 1 and 2)

- Spatially- and time-resolved temperature absolute [O] measurements in lean low-pressure flames, with nsec pulse plasmas coupled directly to reaction zone: \(CH_4, C_2H_4, H_2 \) flames (Platforms 3)

- Time-resolved \(T, T_v(N_2), \text{ and } N_2 \) \((X,v=0-12) \) population measurements (psec CARS, spontaneous Raman) in high energy loading nsec pulse discharges in \(H_2 - \text{ air and } C_xH_y - \text{ air} \)

- Time-resolved temperature measurements (purely rotational CARS) in air, \(H_2\text{-air, } C_2H_4\text{-air: explore possible effect of temperature on OH decay kinetics in nonequilibrium plasmas} \)

- Spatially resolved electric field measurements (4-wave mixing / CARS) in nsec pulse discharge in air, \(H_2 - \text{ air: collaboration with RUB group} \)

- Electron density measurements in reacting molecular gas mixtures (Thomson scattering)

- Further 2-D discharge / fuel-air plasma chemistry model development and validation over a range of pressures, equivalence ratios, for a larger set of fuels; reduced mechanism development
Collaboration: The whole is greater than the sum of the parts

MURI Teams

- **Penn State (Nick Tsolas and Rich Yetter):** Species concentrations measurements in a high-temperature, nonequilibrium plasma flow reactor / kinetic mechanism validation: complementary to OSU Platform I experiment

- **Georgia Tech (Sharath Nagaraja and Vigor Yang):** Kinetic modeling of repetitive nanosecond pulse discharges in air and H₂-air mixtures (OSU Platform I experiments); validation of 0-D analytic model of a plane-to-plane nsec pulse discharge

Outside MURI

- **AFRL (Cam Carter):** Absolute OH LIF calibration by Rayleigh scattering

- **Moscow State University (Nikolay Popov):** Kinetic modeling of rapid heating in high energy loading, nsec pulse discharges (OSU Platform III experiment)

- **High Temperature Institute, Russian Academy of Sciences, IVTAN (Sergey Leonov):** pulsed electric discharges for flow mixing enhancement, kinetics of vibrational energy transfer

New exciting project: Center for Exascale Modeling of Plasma Assisted Combustion (PSAAP-2, lead: U. Illinois at Urbana-Champaign)

- “Unlimited” computational firepower (1 exaFLOP = 10⁶ teraFLOPs = 10¹⁸ FLOPs)

- Great expectations: 3-D geometry, multiscale (space and time), 6-D full Boltzmann equation, non-local electron kinetics, plasma-surface interaction, complex plasma / combustion chemistry
Ohio State lead:

MURI collaborators lead:

