Energy conversion in high enthalpy flows and non-equilibrium plasmas

Kraig Frederickson, Sergey Leonov, Munetake Nishihara, Evgeny Ivanov, Igor V. Adamovich, Walter R. Lempert, J. William Rich *

Michael A. Chazzyka Nonequilibrium Thermodynamics Laboratories, Department of Mechanical and Aerospace Engineering, The Ohio State University, 201 W. 19th Ave., Columbus, OH 43210, United States

A R T I C L E I N F O

Article history:
Received 17 July 2014
Accepted 11 September 2014
Available online 20 November 2014

Keywords:
Nonequilibrium flows
Hypersonics
Gas lasers
Plasmas

A B S T R A C T

Recent developments in the study of very high energy non-equilibrium fluid flows are reviewed. These are flows of molecular gases which exhibit substantial degrees of mode disequilibrium, specifically high energy in molecular vibrational and electronic modes, and high electron energies when the gases are weakly ionized. In contrast, the modes of molecular translation and rotation remain at lower energies. Attention is focused on high density, collision-dominated gases. Studies in two systems are presented: A small wind tunnel where an $M=5$ steady air flow over small models is produced, and a flowing carbon monoxide gas laser, exhibiting very high energy loading of the vibrational quantum states. The development of non-intrusive optical diagnostics to measure vibrational and electronic state populations and rotational/translational mode temperatures in the flows, with high spatial and temporal resolution, is presented. Kinetic modeling and experimental validation studies in these environments are also discussed.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The nonequilibrium of molecular modes of motion can play a major role in high speed flow fields, influencing dynamic forces, heat transfer, and radiative signatures in aerospace vehicles. In addition, such flows often are weakly ionized plasmas, with attendant electron-molecule energy transfer processes that figure in the study and development of high power gas lasers. Nonequilibrium is defined here as occurring in a fluid when one or more molecular or electron components have differing mean energies. Usual thermodynamic equilibrium does not pertain; the fluid energy content cannot be characterized by a single temperature. Such nonequilibrium can be created by a variety of processes, including shock heating, rapid supersonic expansion, radiative energy absorption, or the passage of an ionizing voltage pulse. If the fluid is isolated from further work interactions, the system will of course decay ("relax") to thermal equilibrium, but with continuing rapid energy input, quasi-steady state nonequilibrium can be maintained.

The Non-equilibrium Thermodynamics Laboratories (NETL) at Ohio State conduct studies of a variety of non-equilibrium flows of particular aerospace interest. Of special interest are weakly-ionized environments where the slow-relaxing vibrational energy modes and the free electrons have much higher energies than the translational and rotational modes of flowing gases. We review here two on-going projects involving such environments. The first is basic study in a small scale Mach 5 non-equilibrium flow wind tunnel. In the tunnel, the vibrational energy of air species is loaded by an electric discharge in the plenum, and the energy content is controlled by adding relaxer species downstream. The second project is an application of non-equilibrium flow studies. This project is to extract power from a hypersonic air flow reacting with carbon at high altitude. This involves the development of a high power laser using carbon monoxide produced by reacting entrained air with carbon. The laser is to develop a total population inversion among its vibrational quantum states.

2. Nonequilibrium flow wind tunnel experiments

The wind tunnel is a small scale supersonic flow system, which can develop steady Mach 5 flows that can be sustained for several seconds. Turn-around times are short, enabling many test runs to be made each hour. With the non-equilibrium loading of the molecular vibrational modes, these are actually very high enthalpy flows, an environment which is usually achieved only in short
duration hypersonic test facilities, such as shock tunnels. The long test times and short turn-around times here are important, enabling relatively rapid development of non-intrusive optical diagnostics which would be difficult to achieve in larger, short-pulse facilities. A detailed description of the system is given in Ref. [1].

The goals of this program are multi-fold. We wish to

1. Obtain experimental data on molecular energy transfer mechanisms and rates to enable predictive modeling of high-speed non-equilibrium flow fields.
2. Develop instrumentation to measure temperature, vibrational populations, and species concentrations in air flows. The instrumentation includes high frame rate nitric oxide planar laser induced fluorescence (NO PLIF), high frame rate nitric dioxide molecular tagging velocimetry (NO$_2$ MTV), picosecond coherent anti-Stokes Raman spectroscopy (ps CARS), two-photon absorption laser induced fluorescence spectroscopy (TALIF), and Thomson scattering.
3. Demonstrate use of such instrumentation to obtain data in short duration hypersonic flow facilities, i.e., in large scale shock tunnels and blow-down wind tunnels.
4. Develop methods of actively influencing flow field energy storage, energy transfer, and aerodynamic control.

Considerable progress towards achieving these goals has been made. We review some of the more significant developments here.

2.1. Wind tunnel configuration

Fig. 1 shows schematic layouts of this wind tunnel. The top drawing is the side view of the system; the bottom drawing is an enlarged top view of the tunnel plenum only. The tunnel walls are made of heavy acrylic plastic. The low gas kinetic temperatures in the flow permit this, despite the very high energy loading of some of the internal molecular modes. Gas flow is from left to right in the figure. Upstream, dry air or nitrogen gas is injected into a flowing plenum section. Gases are supplied at plenum pressures of $P_0=0.5$–1.0 atm. Steady-state non-equilibrium supersonic flow in the wind tunnel is produced by sustaining a high-pressure electric discharge in the plenum. Here, two pairs of electrodes are arranged to provide orthogonal current flow paths. These electrodes create two fully overlapping discharges in a rectangular cross section channel 1 cm in height and 4 cm wide (see Fig. 1). The first is a transverse, nanosecond pulse discharge sustained between two plane dielectric barrier electrodes flush mounted in the top and bottom walls of the discharge section, and operated at a high pulse repetition rate of $\nu=100$ Hz. The second is a transverse dc discharge sustained between two copper plate electrodes 4 cm long with a height of 1 cm, mounted in the side walls of the discharge section.

The main purpose of the two overlapping discharges is to generate stable non-equilibrium plasmas at high plenum pressures and discharge energy loadings. The repetitive nanosecond pulse discharge is operated using a high peak voltage (up to 30 kV), short pulse duration (5 ns) pulse generator. Volume ionization in the discharge section is generated during each high-voltage pulse, after which the voltage is turned off before ionization/heating instability has time to develop. Between the ionizing pulses, energy is coupled to the flow by the dc discharge, sustained in the ionized flow created by the pulser. The dc voltage is deliberately kept low below breakdown threshold, typically below 4–5 kV, to preclude development of a self-sustained (i.e., independent of pulsed ionization) dc discharge in the high

![Fig. 1. Schematic of the Mach 5 nonequilibrium plasma wind tunnel.](image-url)
pressure flow, which would result in instability development and arcing. The bulk of the power loading into the flowing gas is provided by the dc discharge; the pulsed discharge provides the ionization. The dc voltage can be selected to input energy into the various internal energy modes; typically, it is set to maximize energy into the molecular vibrational modes.

Previously, this approach has been used in our work to sustain high-power discharges in a Mach 3–4 MHD wind tunnel [2,3] and in an electrically excited gas dynamic oxygen–iodine laser [4]. In the present experiments, the repetitively pulsed discharge is operated for up to several seconds, and the dc discharge is operated for 0.5–1.0 s. The reduced electric fields in the two discharges are significantly different, \(E/N_{\text{peak}} \approx 300 \text{Td} \) in the nanosecond pulsed discharge and \(E/N \approx 10 \text{Td} \) in the dc discharge (1 Td = \(10^{-17} \text{V cm}^2 \)). At these conditions, a significant fraction of input power in the pulsed discharge is spent on electronic excitation, dissociation, and ionization of the test gases, while nearly all input power in the dc discharge (up to \(\sim 80–90\% \)) is stored in the vibrational energy modes of nitrogen and oxygen, with fairly little power going to translational/rotational modes, i.e., to heat. Due to a very long N\(_2\) vibrational relaxation time (\(\sim 7 \text{ atm s} \)) at near-room temperature [6], this approach can create essentially vibrationally frozen nitrogen and air flows in the supersonic test section, with vibrational temperature considerably exceeding the translational/rotational mode temperature. The system is in no sense an "arc tunnel". Unlike an arc tunnel, the plenum excitation creates a glow-type electric discharge, highly non-equilibrium, with relatively low gas kinetic heating.

Optical access to the flow in the discharge section is provided through multiple optical windows, including two 1.5-inch diameter BK-7 glass windows in the side walls of a separate optical diagnostics section, which can be placed between the discharge section and the nozzle (see Fig. 1), and a 2-inch diameter UV-grade fused silica window, which can be installed in the back wall of the discharge section. Recently, the optical diagnostics section has been used to measure vibrational temperature of nitrogen downstream of the discharge section, using a picosecond CARS system [7]. The 2-inch optical access window has been used to take Intensified Charged-Coupled Device (ICCD) camera images and photographs of the discharge, as well as UV/visible emission spectra (nitrogen second positive bands) used for translational/rotational temperature inference in the discharge. The emission spectra have been taken using an optical multichannel analyzer (OMA) with a Spectra-Physics 0.25 m spectrometer. When the 2-inch window is used, the flow enters the discharge section at 90° to the wind tunnel axis, which may adversely affect the flow quality in the plenum. Therefore, in the experiments when discharge images and emission spectra are not taken, the flow enters the plenum through the back wall of the discharge section.

Downstream of the injector, the flow expands through an aerodynamically contoured two-dimensional Mach 5 nozzle, with a throat height of 1.6 mm. Top and bottom walls of the supersonic test section after the nozzle exit diverge at a 1.5° angle each to provide boundary-layer relief. The static pressure in the supersonic test section is measured using a wall pressure tap in the side wall at the end of the nozzle. A 4 cm long, 5 mm diameter quartz cylinder model is mounted in the center of the 7 cm long supersonic test section, i.e., 3.5 cm downstream of the end of the nozzle. The model extends wall-to-wall and is held in place using extensions placed inside circular recesses drilled in 2 \(\times \) 2 in. UV-grade fused silica optical access windows flush mounted in the side walls of the test section. Two additional optical access windows, also 2 \(\times \) 2 in. UV-grade fused silica, are flush mounted in the top and bottom test section walls, thus providing optical access to the supersonic test section from all four directions. The windows are used for NO PLIF measurements, schlieren visualization, and emission spectroscopy measurements.

Downstream of the test section, a supersonic diffuser with a 5° step angle is used to improve pressure recovery before the flow exits into an 8-in.-diam vacuum pipe, connected to a 110 ft\(^3\) vacuum tank and a 200 cfm vacuum pump. At the baseline conditions, plenum pressure of \(P_0=370 \pm 0.05 \text{Torr} \), the test section static pressure is \(P=1.2 \pm 0.05 \text{Torr} \), corresponding to a Mach number of \(M=4.55 \pm 0.03 \). During the experiment, both the main flow through the discharge and the injection flows are controlled using solenoid valves. The main flow rate is calculated using a choked-flow equation, based on the plenum pressure and the nozzle throat area. Injection flow rates have been measured using a mass flow controller. At the baseline conditions, nitrogen at \(P_0=0.5–1.0 \text{ atm} \), the mass flow rate through the tunnel is 7.5–15.0 g/s and the steady-state run time at the constant static pressure in the supersonic test section is 5–10 s. The runs can be repeated every few minutes.

2.2. Flow and discharge characterization

Fig. 2 plots the Mach number in the supersonic test section vs. the plenum pressure, inferred from wall static pressure measurements at the end of the Mach 5 nozzle. The static pressure was measured in the cold nitrogen flow (without the discharge in the plenum) for three different sets of conditions, (a) without a

![Fig. 2. Test section Mach number vs. plenum pressure, inferred from the static pressure measured at the end of the nozzle. At \(P_0=760 \pm 0.05 \text{Torr} \), baseline test section static pressure is \(P=1.5 \pm 0.05 \text{Torr} \).](image-url)
cylinder model in the test section, (b) with a 5 mm diameter cylinder model, and (c) with a 10 mm diameter model. It can be seen that, as the plenum pressure is increased, the Mach number measured without the model in the test section approaches the design Mach 5 value, \(M = 4.5 \pm 5.0 \) at \(P_0 = 380 \sim 760 \) Torr. One can also see that installing the 5 mm diameter model has a fairly minor effect on the static pressure and the Mach number, also see that installing the 5 mm diameter model has a fairly minor effect on the static pressure and the Mach number, also see that installing the 5 mm diameter model has a fairly minor effect on the static pressure and the Mach number, also see that installing the 5 mm diameter model has a fairly minor effect on the static pressure and the Mach number, also see that installing the 5 mm diameter model has a fairly minor effect on the static pressure and the Mach number, also see that installing the 5 mm diameter model has a fairly minor effect on the static pressure and the Mach number, also see that installing the 5 mm diameter model has a fairly minor effect on the static pressure and the Mach number, also see that installing the 5 mm diameter model has a fairly minor effect on the static pressure and the Mach number, also see that installing the 5 mm diameter model has a fairly minor effect on the static pressure and the Mach number, also see that installing the 5 mm diameter model has a fairly minor effect on the static pressure and the Mach number, also see that installing the 5 mm diameter model has a fairly minor effect on the static pressure and the Mach number, also see that installing the 5 mm diameter model has a fairly minor effect on the static pressure and the Mach number.

These results are consistent with the predictions of CFD calculations using a hybrid, implicit unstructured fully coupled finite volume solver (US3D) [9,10] that solves the compressible, three-dimensional Navier–Stokes equations to compute the flow field. The code was developed and used to model the cold flow (with electric discharges off) in the tunnel [1,9,10]. A subsonic inflow boundary condition is used for the nozzle [11]. Fig. 3 shows the code predictions for nitrogen flow at \(P_0 = 380 \) Torr and \(T_0 = 300 \) K. The predicted side wall static pressure 4 cm upstream of the model is \(P = 1.08 \) Torr, which is close to the measured static pressure at this location, \(P = 1.2 \) Torr. It can be seen that the Mach number upstream of the 5 mm diameter cylinder model is about \(M = 4.5 \), in good agreement with the Mach number inferred from the static pressure measurement. One can also see “bulges” developing in the side wall boundary layers due to the secondary cross flow. However, approximately 50% of the test section width upstream of the cylinder is occupied with an “inviscid core” flow with \(M = 4.5 \).

2.3. Diagnostics

We review here some of the principal diagnostics used to characterize the nonequilibrium flow features of this tunnel. Beyond the schlieren system, the laser diagnostic systems reviewed here were developed at NETL for this hypersonic nonequilibrium flowfield application; they have already been exported and used in larger test facilities in the United States.

2.3.1. Schlieren system

The shock wave standing in front of the cylinder model in the supersonic test section is visualized by schlieren diagnostics. The schlieren system uses a high-power green LED with a thermoelectric cooler as a continuous light source and a CMOS camera operated in video mode (exposure time 1.5 ms, frame rate 4–8 frames/s). Taking schlieren images is not synchronized with the discharge operation, but correct timing is controlled by partially overlapping the plasma image with the schlieren image on the camera. Optical access on all four sides of the test section enables taking schlieren images of the shock from two different directions, both parallel and perpendicular to the cylinder model axis (side view and top view).

2.3.2. PLIF system

The flow field in the supersonic test section is visualized by high frame rate NO PLIF, using a custom design, tunable burst-mode laser described in detail in Refs. [12,13]. The laser is capable of generating bursts of 10–20 pulses at the fundamental frequency of 1064 nm, at a high pulse-repetition rate, 10–500 kHz, burst repetition rate of 1 Hz, and pulse energy of up to 100 mJ/pulse. The laser is tunable over a wide range of wavelengths, using nonlinear wave mixing and a custom-design optical parametric oscillator. For high frame rate NO PLIF imaging, the laser-generated bursts of 10–20 pulses in the vicinity of 226 nm, at a pulse-repetition rate of 10–20 kHz (0.05–0.1 ms burst duration) and a pulse energy of \(\approx 0.3 \) mJ/pulse [14]. The laser is operated both in a broadband mode and in the injection-seeded mode, to produce narrow linewidth \((\approx 0.01 \text{ cm}^{-1}) \) tunable output, providing access to NO \((\chi^{2}\Pi_{1u}v' \leftrightarrow A^{2}\Sigma,v'in\) absorption transitions. Nitric oxide is seeded into the flow through the injector in the supersonic part of the wind tunnel, as discussed previously, or through the short cylinder model in the supersonic test section, using a 20% NO–80% N\(_2\) mixture. Baseline NO mole fraction in the main flow with subsonic injection was 0.3%. NO PLIF measurements have also been conducted in unseeded airflows using nitric oxide generated in the electric discharge in the plenum.

![Fig. 3. Mach number distributions in the entire wind tunnel (top) and in the flow cross section through the cylinder model axis (bottom), predicted by a 3-D compressible Navier–Stokes CFD flow code. Nitrogen, \(T_0 = 300 \) K, \(P_0 = 380 \) Torr.](image-url)
Injection-seeded (single-line) laser operation was used to pump NO on two different rotational lines of the \(\nu' = 0 \rightarrow \nu'' = 0 \) band, \(Q_1 + P_1 (J = 5.5) \) line at 226.17 nm and \(Q_1 + P_1 (J = 16.5) \) line at 225.88 nm, to measure the rotational temperature in the supersonic test section, as well as on a single rotational line of the \(\nu' = 1 \rightarrow \nu'' = 1 \) band, \(Q_1 + P_1 (J = 3.5) \) at 223.83 nm, to measure NO vibrational temperature. The laser sheet, approximately 2.5 cm wide, is directed through the supersonic test section vertically, using optical access windows in the top and bottom walls. NO fluorescence was collected at 90° through the side window and detected by a PI-MAX UV-I CCD camera (Princeton Instruments) with a UV lens (\(f = 100 \text{ mm}, \text{Thorlabs} \)), the camera gate was set at 1 ms to accumulate fluorescence signal after excitation by 10 pump laser pulses, with the laser operating at a 10 kHz pulse-repetition rate. To monitor the intensity distribution across the laser sheet, approximately 5% of the incident sheet was reflected off a glass plate placed 2 cm above the wind tunnel and directed into a cell filled with a Rhodamine 640 dye diluted in methanol. The fluorescence from the dye in the cell, between 570 and 600 nm, was recorded using a PIXIS 256E 1024 × 256 pixel CCD array camera (Princeton Instruments), thus yielding the laser sheet intensity distribution. The NO PLIF signal distribution was normalized on the laser sheet intensity distribution during post-processing of the experimental data. Emission spectra from the flowing afterglow in the supersonic test section have been taken using the same OMA system as discussed previously. Afterglow images were taken using either the PI-MAX CCD camera or the Andor iStar ICCD camera.

2.3.3. Picosecond CARS diagnostic system

Picosecond Coherent Anti-Stokes Raman Scattering (CARS) spectroscopy has been used for the direct measurement of the ro-vibrational distribution functions of nitrogen. CARS is a four wave mixing spectroscopic technique which has been used extensively for thermometry and species concentration measurements of combustion and other gas phase reacting and non-reacting flows [15,16]. CARS involves the interaction of three input photons, termed pump, Stokes, and probe, with a molecule, resulting in the generation of a signal photon. If the pump/Stokes photons have a frequency difference corresponding to an internal degree of freedom (generally rotational or vibrational), a strong coherent (laser-like), “resonant” signal is produced in a direction determined by what is known as the “phase-matching” criteria. All data presented in this work used vibrational Q-branch (\(\Delta J = 0 \)) transitions.

The CARS signal intensity, \(I_{\text{CARS}} \), has a linear dependence on the Stokes laser intensity, \(I_{\text{Stokes}} \), while scaling quadratically with the magnitude of the CARS susceptibility (proportional to number density, \(|x_{\text{CARS}}| \propto N \)), i.e. \(I_{\text{CARS}} \propto I_{\text{Stokes}} \cdot N^2 \). These effects are accounted for in the data processing. Normalizing the CARS intensity by a non-resonant background (NRB) spectrum captured in argon accounts for the variation in the intensity profile of the Stokes laser. It was experimentally determined that the average NRB profile was very stable over the course of a day, so one 200-shot average NRB spectrum was used to normalize the data captured each day. After the data normalization, the square root of the intensity is taken to account for the quadratic dependence on number density; all spectral data plotted below is this square root of normalized intensity. For measurement of an effective vibrational “temperature”, \(T_v \), the CARS cross section must also be accounted for, for which low vibrational levels of nitrogen species approximately as \((\nu' + 1)^2 \) [7]. Since the square root of the data has already been taken, dividing the integral of each peak by \((\nu' + 1) \) yields the relative vibrational population in each level.

For the hypersonic nonequilibrium flow tunnel, the Unstable-resonator Spatially Enhanced Detection (USED) phase matching geometry [17,18] has been employed. For this geometry the single 532 nm pump/probe beam is enlarged with a telescope and the center portion of the beam is removed, creating an annulus. This beam is then combined coaxially with the Stokes beam by a dichroic mirror, similar to a collinear alignment except that there is no spatial overlap because the Stokes beam occupies the void created within the pump/probe beam. After the beams pass the focusing lens, the two regions of the annular pattern remain spatially separated until they arrive very near to the focal region; it is within this small overlap volume that CARS signal generation occurs. According to the phase matching criteria, the generated CARS signal appears as a ring outside of the pump/probe beam. This phase matching scheme is primarily chosen due to concerns about potential beam steering that would occur for measurements performed in the vicinity of the characteristic bow shock produced by test objects in the Mach 5 section of the flow, as well as a desire to perform measurements as close as possible to the test object surface. There is a small sacrifice in spatial resolution, relative to the more common folded BoxCARS geometry, but this is not significant for the measurements reported here. The transverse spatial resolution for our system is on the order of 50 \(\mu \text{m} \); a measurement of the longitudinal resolution, performed by scanning a glass flat in the vicinity of the CARS measurement volume and observing the non-resonant background signal, indicates that > 95% of the signal generated comes within a 3 mm length at the beam focus, as compared to ~1 mm or less for BoxCARS, and 1–2 cm for collinear CARS (determined in the same manner).

The broadband Stokes beam is generated with a NETL-developed dye laser, patterned after Ref. [19], which employs side-pumped oscillator and pre-amplifier cells, followed by an end-pumped final amplifier cell (note there is no output coupler). The combination of a half-wave plate and thin film polarizer allows for adjustment of the ratio between energy pumping the dye versus the energy in the CARS pump/probe beam. Dye laser energy efficiency is as high as 10%. For this work, mixtures of Rhodamine 640 (R640) and Kiton Red 620 (KR620) were used. The dye laser output is centered near 604 nm, with a full width at half maximum (FWHM) of approximately 5–6 nm [20].

The dye laser is pumped by an Ekspla SL-333 Nd:YAG laser, as can be seen in Fig. 4, which shows a schematic of the CARS experimental arrangement. The nearly transform limited YAG outputs pulses of approximately 150 ps in duration, with variable energy output of up to 120 mJ/pulse at 532 nm. The choice to use a picosecond (ps) system is motivated by several reasons, including enabling time-resolved measurements at ns and sub-ns time scales, as well as lowering necessary pulse energies, reducing the risk of window damage. After the dichroic mirror, which creates the 532 nm/607 nm annulus, the beams are focused into the test section with a 250 mm focal length lens. After the focal point, located in the center of the wind tunnel, the beams are re-collimated using a 100 mm focal length lens.

After the collimating lens, a series of long-wavelength-passing dichroic mirrors reflect the ~473 nm CARS beam while dumping the pump/probe and Stokes beams. Finally, the CARS signal passes through a short-pass filter, with a cutoff wavelength of 503 nm, and is focused by a 100 mm lens onto the slit of a 0.75 m Andor Shamrock 750 spectrometer. At the exit plane of the spectrometer, a relay lens magnification system, comprised of two Nikon F-mount lenses, a 35 mm lens attached to the spectrometer and an 80–200 mm telephoto lens attached to the camera, provides variable spectral resolution magnification. For the work presented, the lens was set to give a ~2.3 × magnification, which resulted in a spectral resolution of ~0.4 cm⁻¹ when used with a 3600 lpm grating. This is sufficient to partially resolve the rotational structure in room temperature Q-branch spectra of nitrogen, as will be demonstrated in the next section. The camera used is an Andor Newton EM-CCD; the 1600 by 400 pixel sensor array is cooled to ~90 °C, with the EM
gain set to 150. The camera and spectrometer are interfaced to a lab computer for data recording. The entire picosecond CARS system is placed on a custom built cart, allowing the entire setup to be easily transported between experimental facilities.

2.4. Measurements

We show in this section some typical nonintrusive measurements in the tunnel and model flow fields, using the diagnostics reviewed above.

2.4.1. NO PLIF measurements

Fig. 5 shows schlieren images of a bow shock in front of a 5 mm diameter cylinder model in the supersonic test section (top view and side view). Nitrogen, \(P_0 = 350 \) Torr, cold flow (no plasma). Shock stand-off distance 1.2 mm.

Fig. 6 compares NO PLIF images of the bow shock flow of Fig. 5 with Mach number distribution (left) and the temperature distribution (right) predicted by the 3-D compressible Navier–Stokes code. It can be seen that the shock stand-off distance and the spanwise extent predicted by the code are in good agreement with the experiment.

Fig. 4. Schematic diagram of psec CARS system.
qualitative agreement with the flow visualization images. In particular, bow shock shape and stand-off distance, as well as the size of the wake behind the model are reproduced well by the flow code.

Fig. 7 shows two-dimensional rotational temperature distributions in a nitrogen flow behind the bow shock at $P_0=370$ Torr, inferred from the intensity ratio of two single-line PLIF images, $J=5.5$ and $J=16.5$. The temperature distributions are shown for two cases, cold flow (no discharge in the plenum), and pulsed/DC discharge excited flow ($\nu=100$ kHz, $U_{PS}=4.5$ kV). To calculate the temperature distributions, intensity ratios were calculated and rotational temperature was inferred for five pairs of NO PLIF images, averaged over 10 laser pulses each (both for $J=5.5$ and for $J=16.5$). From Fig. 7, it can be seen that temperatures inferred at the stagnation point are $T=300 \pm 30$ K in the cold flow and $T=500 \pm 190$ K in the flow excited by the discharge in plenum. Although Joule heating of the flow in the discharge contributes to higher stagnation point temperature with the discharge on, this result also suggests significant vibrational relaxation of nonequilibrium nitrogen flow, excited by the discharge in the nozzle plenum, behind the shock. Vibrational relaxation of the flow in the shock layer can be quantified by further measurements of nitrogen vibrational temperature behind the shock, using ps CARS diagnostics, which are discussed in the following subsection. Temperature inferred in the free stream is subject to significant uncertainty due to very low fluorescence signal in this region.

In the present work, the two rotational transitions were chosen for best temperature measurements sensitivity behind the bow shock. Note that temperature inferred in the “shadow” region below the
cylinder model cannot be considered accurate, since laser beam lensing by the model may well cause saturation of the absorption transitions and result in a significant error in the temperature. Finally, temperature inferred in the wake behind the model cannot be inferred with any certainty due to a very low fluorescence signal in this region, both in $j=5.5$ and $j=16.5$ images.

Fig. 8(a) shows an NO PLIF image obtained when the pump laser was tuned to the NO absorption transition NO($X_v' = 1 \rightarrow A_v'$, $v''=1$, $Q_{31}+P_{21}$ ($j=3.5$)) at 223.83 nm. The laser pulse repetition rate was 10 kHz, and the image was accumulated over 10 laser pulses. The nitrogen flow at $P_0=370$ Torr was excited by a pulser/sustainer discharge ($\nu=100$ kHz, $U_{ps}=4.5$ kV) and seeded with 0.3% of NO. In Fig. 8(a), the $v'=1$ fluorescence signal intensity near stagnation point is approximately 30 times lower compared to the fluorescence intensity of $v'=0$ in the same region. In nitrogen flows excited by the electric discharge in the nozzle plenum and seeded with small amounts of NO, bright spontaneous emission on NO($A^2\Sigma \rightarrow X^2\Pi$) transitions ($\gamma$ bands) was found to overlap with the NO PLIF signal due to rapid collisional energy transfer from the $N_2(A^2\Sigma)$ state generated in the discharge to the NO($A^2\Sigma$) state, $N_2(A^2\Sigma)+NO(X^2\Pi)\rightarrow N_2(X^1\Sigma)+NO(A^2\Sigma)$, with a room temperature rate coefficient of $k=6.9 \times 10^{-11}$ cm3/s [21]. However, the NO mole fraction of 0.3%, used to obtain the NO($v=1$) PLIF image of Fig. 8(a), appears sufficient to quench the $N_2(A^2\Sigma)$ state in the subsonic section completely, and no spontaneous emission of NO was detected at these conditions. Note that the intensity distribution in the NO($v=1$) PLIF image is nearly uniform, indicating that NO vibrational temperatures in the free stream and behind the bow shock are fairly close.

Fig. 8(b) shows a two-dimensional NO vibrational temperature distribution inferred from the intensity ratio of the NO PLIF images from ($v'=0$, $j=5.5$) and ($v'=1$, $j=3.5$), taking into account the difference in the laser pulse energies, Frank–Condon factors, rotational level populations, and Einstein coefficients for spontaneous emission. The average NO vibrational temperature inferred along the flow centerline in the free stream is $T_v(NO)=1000 \pm 170$ K. Note that the apparent NO vibrational temperature exceeding 2000 K, inferred below the cylinder model (see Fig. 8(b)), are affected by low signal-to-noise ratio in this region (in the “shadow” of the model).

Figs. 9 and 10 show split comparison of the temperature fields inferred from NO PLIF measurements with the CFD model predictions, with and without the pulser/DC discharge operating in plenum. For the conditions with the discharge on, comparison with CFD calculations was done for $T_0=500$ K and $T_{c0}=1700$ K, close to the temperatures measured in plenum by ps CARS (see following section). As can be seen from Figs. 9 and 10, the results of NO PLIF thermometry measurements and CFD modeling calculations predictions show good agreement. The results of the calculations also demonstrated that energy loaded by the discharge into the vibrational mode of nitrogen remains “frozen”
throughout the entire flow, including flow behind the bow shock, consistent with the CARS measurements, which we review below.

2.4.2. CARS measurements

2.4.2.1. Pure nitrogen flow, no discharge. These measurements focus on both translational/rotational temperature, T_{rot}, as well as the “first-level” vibrational temperature, T_{vib}, defined as

$$T_{vib} = \frac{\theta_{vb}}{\ln[n_0/n_1]} \tag{1}$$

where for nitrogen, $\theta_{vb}=3353$ K is the energy difference between vibrational levels $v=0$ and $v=1$ in temperature units. While under low resolution the spectral output of the Stokes beam from the modeless dye laser appears very similar from one shot to the next, higher resolution reveals significant shot-to-shot spectral profile variation. To partially mitigate this, 20 single-shot spectra are averaged together. An example of this can be seen in Fig. 11, taken at $P_0=370$ Torr and nominal room temperature, $T \approx 300$ K. For rotational temperature inference, after the averaging is performed, the spectrum is fitted with the Sandia CARSFT least-squares fitting code [22]. The resulting nitrogen best fit rotational temperature for the spectrum shown in Fig. 11(b) is $T_{rot}(N_2)=322$ K, with precision equal to ± 20 K. For vibrational temperature inference the $v=0$ and $v=1$ bands, which are well isolated spectrally, are numerically integrated, which upon division by $v''+1$ to correct for the cross section (for assumed harmonic potential), yield the $v=0$ and $v=1$ level populations.

2.4.2.2. Pulser–sustainer discharge, with relaxer injection. Fig. 12 shows a pair of N_2 CARS spectra obtained from operation of the pulser–sustainer discharge, with a DC power supply voltage (V_{ps}) of 4.5 kV. The dash-dotted black curve corresponds to a baseline case of pure nitrogen flow at 300 Torr and the solid blue curve shows the spectrum when 1 Torr partial pressure of CO$_2$ is injected downstream of the discharge, approximately 9 cm (~ 2 ms) upstream of the CARS measurement location. It is clear that there is a significant difference between the two conditions. For no relaxer injection, the flow is extremely non-equilibrium, with a

![Fig. 10. Comparison of experimental (top) and CFD (bottom) temperature distributions with a with a pulsed/DC discharge operating in plenum ($\nu=100$ kHz, $U_{ps}=4.5$ kV). Nitrogen, $P_0=370$ torr. In the calculations, plenum conditions are $T_0=500$ K, $T_v=1700$ K.](image)

![Fig. 11. Pure N$_2$ CARS spectra at 370 torr with no discharge, (a) single-shot and (b) 20-shot average, along with Carsfit best synthetic spectra; $T_{rot}=322$ K.](image)

![Fig. 12. CARS spectra for pulser–sustainer discharge at 300 torr total pressure, in pure nitrogen (i.e. no relaxer injection, black dash-dot) and 1 torr CO$_2$ partial pressure injection (blue solid). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)](image)
vibrational temperature of nearly 2000 K, while the inferred gas rotational/translation temperature is $T_{rot}-450$ K. With only 1 Torr partial pressure of carbon dioxide injected, nearly all the vibrational energy has been removed from the nitrogen, evidenced by the nearly equilibrated $T_{eq}=815$ K and $T_{rot}=630$ K.

Five different species (carbon dioxide, nitric oxide, hydrogen, oxygen and nitrogen) were injected over a range of partial pressures. These gases were chosen because their rates for nitrogen vibrational relaxation vary by several orders of magnitude. Fig. 13 plots both the nitrogen vibrational and rotational/translational temperatures measured in these mixtures versus the partial pressure of the injected species. It can be seen that the addition of oxygen to the discharge-excited nitrogen (solid red curve), up to 20% mole fraction (nearly "synthetic air"), does not cause a significant change in either the vibrational or rotational gas temperature, due to the low vibration–vibration (V–V) energy transfer rate coefficient, $N_2(v=1)+O_2(v=0)\rightarrow N_2(v=0)+O_2(v=1)$, $k_{VV}=3 \times 10^{-17}$ cm3/s at $T_{rot}=450$ K [23]. For injection of 60 Torr oxygen, the characteristic time for V-V relaxation, $\tau_{VV}=1/k_{VV}\approx 70$ ms for CO_2 partial pressure of only 1 Torr). CO2 vibrational energy per carbondioxide molecule as a function of partial pressure of the injected species [24] ($\tau_{VV}=1/k_{VV}\approx 2 ms$ for NO partial pressure of 5 Torr), comparable to the flow residence time. The V–T relaxation rate coefficient for N_2-H_2, $N_2(v=1)+H_2\rightarrow N_2(v=0)+H_2$, is $k_{VT}=6.1 \times 10^{-16}$ cm3/s at 450 K [25] ($\tau_{VT}=1/k_{VT}\approx 6 ms$ for H$_2$ partial pressure of 10 Torr). Using the temperature dependence suggested in [26], this rate increases to $k_{VT}=1.3 \times 10^{-15}$ cm3/s at $T=550$ K ($\tau_{VT}=3 ms$). Similarly to N_2-O_2, the V-V energy transfer for N_2-H_2 is extremely slow, due to a significant difference in vibrational quantal [27].

Injection of non-excited nitrogen was also performed; although the V-V energy transfer rate coefficient for nitrogen, $N_2(v=1)+N_2(v=0)$, is relatively high, $k_{VV}=1.5 \times 10^{-14}$ cm3/s at room temperature [28] ($\tau_{VV}\approx 0.5 ms$ for injection N_2 partial pressure of 5 Torr), the resonant energy transfer process simply results in the redistribution of N_2 vibrational energy amongst the "discharge loaded" and "cold injected" molecules, but the energy remains "locked" in the nitrogen vibrational mode.

As the results of Fig. 13 indicate, energy extraction from the nitrogen vibrational mode results in an increase of the gas temperature, i.e. thermalization of the vibrational energy as the discharge-loaded flow is equilibrated. Fig. 14 plots the average total nitrogen translational/rotational+vibrational energy per molecule as a function of partial pressure of the injected species for all of the conditions shown previously in Fig. 13. As the figure demonstrates, within the experimental uncertainty, the total nitrogen rotational, translational, and vibrational energy is conserved. This indicates that any inter-species V–V transfer is followed by rapid V–T relaxation, with a result that there is negligible energy storage in the vibrational modes of injected species.

2.4.2.3. Measurements in a supersonic flow. Finally, measurements of vibrational temperature in the supersonic section have also been performed [7]. These measurements are especially challenging due to very low free-stream static pressure, $P_0=1.2$ Torr, measured using a wall pressure tap at the end of the nozzle. As mentioned, a 5 mm diameter quartz cylinder is positioned in the supersonic flow, which creates a bow shock as shown previously in Figs. 5–10. The CARS spectra in Fig. 15(a) are eight-shot averages, collected both in the supersonic free-stream and behind the bow shock for 300 Torr pure N_2 in the plenum with no discharge. The difference in signal level results from the different number densities present in the two measurement locations; the spectra also demonstrate typical signal-to-noise levels for this arrangement. The plots in Fig. 15(b) and (c) show ten-shot average spectra, collected in the supersonic free-stream and behind the bow shock, respectively, for 300 Torr N_2 in the plenum, with the pulser–sustainer discharge in operation (sustainer $V_{PS}=4.5$ K). Electromagnetic interference (EMI) caused by the ns pulser can be clearly seen in both spectra, and becomes increasingly problematic as signal levels decrease. The significant reduction in the ground vibrational level signal strengths for both of these spectra (compared to the “no-discharge” data acquired at each location) can be attributed to both a reduction in total number density, due to gas heating from the discharge, as well as significant population loss to excited vibrational states. The ratio of the integrated square-root of peak intensities is used to determine the first-level nitrogen vibrational temperatures, as previously described.

Due to the quadratic scaling of CARS signal intensity to the density, as previously mentioned, the integrated square-root of the

Fig. 13. Pulser–sustainer discharge, $V_{PS}=4.5$ K, various injected species, 300 torr total mixture pressure. (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.)

Fig. 14. Sum of nitrogen translational+rotational+vibrational energy as a function of relaxant species partial pressure.
the measurement region has moved beyond the shock location. Moving downstream, measurements captured at the free-stream position directly adjacent to the shock front. Spectra captured without the discharge present; ten-shot average spectra with the pulser sustainer discharge operating, collected in the (b) supersonic free-stream and (c) behind the bow shock.

As mentioned above, shock stand-off distance detected, 1.0 mm, is somewhat smaller than measured in our previous experiments using a 4 cm long, 5 mm diameter cylinder, supported at the tunnel sidewalls, 1.2 mm [1]. This may be explained by the effect of finite cylinder length, which has been studied in a Mach 4 flow in a shock tube experiment [29]. In [29], it was shown that the ratio of stand-off distance to the cylinder diameter, d/D, tends to decrease as the cylinder length-to-diameter ratio, l/D, is reduced below l/D=4. This effect is primarily due to flow three-dimensionality, i.e. spanwise flow behind the bow shock. At the present conditions, l/D=7.5 mm/5 mm=1.25. The number densities measured behind the shock are nominally 3–4 times higher than those measured in the free-stream, somewhat less than the bow shock density jump of 5.1, predicted by a 3-D compressible Navier-Stokes flow code for a cylinder model extending wall-to-wall [1]. The density ratio across the shock may be also affected by the three-dimensionality of the flow over the short cylinder model used in the present work.

The plot in Fig. 16(b) shows the inferred \(T_v(N_2) \) for several locations both in the free-stream and behind the shock. These data are taken with the pulser–sustainer discharge operating in 300 Torr \(N_2 \) in plenum, with and without 0.25 Torr \(CO_2 \) injection. Both with \(CO_2 \) injection and without injection, vibrational temperatures inferred behind the shock are very similar to those observed in the free-stream. As the recovery pressure behind the shock is significantly lower than the plenum pressure, vibrational relaxation beyond that present in the relatively high density subsonic flow does not occur. The vibrational temperature inferred for the case of 0.25 Torr \(CO_2 \) injection is close to the value inferred in plenum at the same conditions, \(T_v \approx 1450 \) K. The vibrational temperature for pure \(N_2 \) without injection is \(T_v \approx 150 \) K less than the value measured in plenum at the same conditions, \(T_v \approx 1900 \) K, a difference of less than 10%. Significant spread in the data is observed, primarily due to the rather low signal-to-noise levels present due to the EMI effects from the ns pulser previously mentioned, as well as the general difficulty of very low CARS signal levels in these extremely low density flows.

In summary, these nonequilibrium flow studies demonstrate it is possible to make detailed measurements of vibrational energy content and translational and rotational mode temperatures in a hypersonic flow. The high spatial resolution along the small stagnation streamline behind the bow shock in the \(M=5 \) flow of Fig. 16, for example, is noteworthy. In this environment, both vibrational “temperature” and translational/rotational mode temperature are measured with a spatial resolution >0.1 mm. Also, these data can be acquired in short times. While the averages shown require times \(\sim 1 \) s, useable single shot data can be acquired within a few ns. Finally, we note that these methods can be extended to measurement of much higher quantum state populations in other nonequilibrium flows.

3. Laser power extraction from hypersonic flow

We discuss here an application of nonequilibrium flow research, which addresses the extraction of laser power from a hypersonic air flow reacting with carbon at high altitude. What is envisioned involves the following elements:

1. Entraining atmospheric air at high altitude in a hypersonic flow channel.
2. The entrained oxygen in the air reacts with carbon to produce carbon monoxide (CO) which is in high energy excited quantum states. These internal quantum states are in the CO vibrational mode, and, possibly, the CO electronic modes of molecular motion.
3. It is desired to produce the excited CO with a population inversion among some of the quantum states. Such a nonequilibrium environment is known to develop powerful laser gain. It would then be possible to extract infrared or ultraviolet laser power from the excited CO in the flow.

This is a major application of nonequilibrium flow research, and considerable progress has been made, which is reviewed here. We note that a long history of earlier development has shown that vibrational-mode-excited CO has produced the most powerful and efficient continuous wave (c.w.) lasers known that are scalable to very high steady infrared powers. Efficiencies as high as 50% were reported by Grigor’yan et al. [30] and powers up to 200 kW have been obtained by Dymshits et al. [31] in c.w. systems operating on the fundamental bands. Overtone c.w. lasing was also achieved in similar systems by Bergman and Rich [32], with efficiencies up to 5% reported by Utkin et al. [33]. Many of these systems have recently been reviewed in detail by Ionin [34].

The mechanism creating the population inversion in these lasers was first described by Rich [35]. The lower quantum levels of the vibrational mode of CO are excited by inelastic collisions with the discharge electrons. Energy is then rapidly redistributed among the vibrational states by exchange of vibrational quanta in CO–CO inelastic collisions (so-called vibration-to-vibration, or “V–V” exchange collisions). When the mean energy in the vibrational mode exceeds the mean energy in the ‘external’ modes of molecular translation and rotation, an extremely non-Boltzmann distribution of population is maintained among the CO vibrational levels, in accordance with the basic theory of Treanor et al. [36]. The distribution is characterized by significant overpopulation of the higher vibrational quantum levels; in most cases, there are not total population inversions between levels. Nevertheless, such “partial population inversions” can lead to the powerful lasers noted above. These inversions are enhanced by either increasing the energy stored in vibration, or by decreasing the energy in the molecular translational and rotational modes, i.e. by decreasing the gas kinetic temperature. The most efficient lasers therefore cool the gases to cryogenic temperatures. They use a glow-type electric discharge to provide the vibrational excitation source, and rely on either wall-cooling or supersonic expansion to cool the discharge gases.

In the present program, CO is created by a chemical reaction, and the nascent CO reaction product is already in vibrationally excited quantum states. The study reviewed here is to address the following issues:

1. Can CO generated by reaction of oxygen with carbon produce a total population inversion in a fast flow, at the relatively high temperatures and gas densities typical of these flows?
2. Can the inversions be maintained in the presence of N2, residual O2, and other reaction products in the flow?
3. Can this kinetics be studied experimentally in a small scale laboratory environment?

3.1. Creating total population inversions in CO by chemical reaction

There are two chemical reactions known to produce total population inversions among the vibrational quantum states of the CO molecule. The first is a reaction between oxygen atoms and carbon monosulfide

\[\text{O} + \text{CS} \rightarrow \text{CO} \ (v > 0) + \text{S} \quad (2) \]

and the second is the reaction of carbon atoms and oxygen molecules,

\[\text{O}_2 + \text{C} \rightarrow \text{CO} \ (v > 0) + \text{O}. \quad (3) \]

Here, CO \((v > 0)\) indicates CO in vibrationally-excited quantum states. The first reaction is the well-known “chemical CO laser” reaction, and it has a long history and a demonstrated record of producing powerful laser action. In such CO lasers, mixtures of O2 and CS2 are typically processed by an electric discharge to produce the free radical O and CS reactants. The nascent CO \((v > 0)\) product is in a total population inversion. Fig. 17, taken from the review by Djeu [37], shows these populations, wherein the ratio of the population of the \(v\)th vibrational quantum state, \(N_v\), to the first quantum state, \(N_0\), is plotted against vibrational quantum number, \(v\). The striking total inversion is evident, with the lowest states essentially unpopulated, and populations reaching a maximum at \(v \sim 12\).

Interest for the present program centers about the second reaction, which can utilize atmospheric O2. Very recent theoretical calculations [38] for this reaction predict that total inversions similar to those of Fig. 17 can be created with activation energies less than 0.5 eV. This prediction has been confirmed by recent crossed O2–C molecular beam experiments [39], which show a large reactive scattering cross section, with a total inversion extending up to at least \(v = 5\). These results are extremely promising for creating a laser based on the C+O2 reaction, but the task of the present nonequilibrium flow study is to see if these results can be developed into a working high speed flow laser, at hypersonic flow densities and temperatures.

3.2. Kinetic modeling

An essential component of the project is the kinetic modeling of a potential large scale laser device. Supersonic flows with vibrational and electronic mode nonequilibrium, such as those presented in Section 2 above, are generally analyzed in the NETL group with kinetic modeling. Lasing action in CO–air mixtures lends itself to such modeling, inasmuch as a long history of development of high power CO lasers has led to a large data base of quantum-state-resolved vibrational energy transfer rates.
The kinetic model is based on the OSU CO optically pumped plasma model [40] and the CO laser field model of Rockwood and Brau [41]. The model also incorporates the quasi-one-dimensional equations of compressible flow, together with kinetic equations governing the population of each vibrational quantum level for each diatomic species in the laser gas mixture as a function of time (‘master equation’ modeling). It is assumed that at each point in the flow field, rotational–translational mode equilibrium pertains, so that a gas kinetic temperature can be defined at each point. Coupled with these equations is a set of laser field equations governing the stimulated emission intensity on each lasing vibrational transition as a function of time. The laser cavity model is a simple Fabry–Perot model, with the optical axis transverse to the flow direction. On each vibrational transition, lasing is assumed to occur on the vibrational–rotational transition with maximum gain.

Input parameters to the calculation are initial gas species concentrations, the gas translational/rotational mode temperature, the flow channel geometry, cavity mirror reflectivities, cavity gain length, and cavity optical losses. The model predicts the laser output on each vibrational transition as a function of time.

We present one modeling case for the potential O2+C chemical laser. This case is to assess the possibility for the entrained air, reacting with carbon, to produce a powerful supersonic flow laser. In this case, the vibrationally excited CO is expanded into a supersonic nozzle. For this calculation, it is assumed that at an upstream point in the flow channel, sufficient carbon has been introduced into the flow to convert all available oxygen into vibrationally excited CO(v) by the O2+C reaction. This forms a plenum at P=200 Torr, T=500 K, 20% CO and 80% N2. Downstream of the plenum, the gases are expanded through nozzle to an area ratio of A/A*=4, and a Mach number M=3. The throat dimensions are 10 cm width × 0.5 cm height. The expanding portion of the supersonic section has a length of 10 cm. Assuming 50% of the reaction energy goes into CO(v), consistent with the predictions of theoretical calculations [38], the vibrational energy flux through the throat is 2.5 kW, with a mass flow rate of 20 g/s. An idealized laser optical cavity is modeled, where mirrors are placed on the sidewalls of the nozzle, beginning at the nozzle throat, and extending downstream. This creates a transverse laser resonator cavity, 10 cm wide (across the throat), and 2 cm high. One mirror side is totally reflective, the other is 99% reflective, permitting 1% of the incident in-cavity laser radiation to be coupled out of the flow. We assume a single-pass cavity loss of 0.1% (0.01%/cm). The vibrationally excited CO entering the nozzle throat is assumed to be in a nascent reaction product population distribution similar to that shown in Fig. 17 above. This is modeled as a Gaussian distribution around \(v=12 \), \(\sim \exp[-(v-12)^2/10] \).

Figs. 18–20 show some results of this model calculation. In Fig. 18, the relative populations of each vibrational state, normalized by the ground state population, \(N_v/N_0 \), is plotted against vibrational quantum number, for several downstream positions in the nozzle, and with laser mirrors are not present in the cavity. At the throat, \(x=0 \), the strong total inversion centered at \(v=12 \) is seen. At the several further downstream shown positions, evolution of the vibrational distribution is displayed, with both levels both lower and higher than \(v=12 \) having increasing population. The process redistributing the vibrational state populations is almost entirely...
V–V inelastic collisional energy transfer which occurs with very large, near gas kinetic, collision rates. Despite this redistribution, however, some total inversions among the states persist down the flow channel, even to $x = 30$ cm. Figs. 19 and 20 plot several of the flow parameters down the nozzle, specifically Mach number, temperature, pressure, and velocity in Fig. 19 (without laser mirrors in the cavity); vibrational energy flux, laser gain, and output laser power in Fig. 20 (without and with laser mirrors in the cavity). It is seen that gain in the Mach 3 cavity, without the laser mirrors present, is $\sim 1\%$/cm at $T = 220$ K (see Fig. 19). At these conditions, flow vibrational mode energy flux remains very nearly constant, ~ 2.5 kW (see Fig. 19), since vibrational relaxation time is much longer compared to the flow residence time. We note that the vibrational energy is retained in the CO vibrational mode even in the presence of the expected amount of molecular nitrogen; energy losses in collisions with the N2 are included in the calculations. As shown in Fig. 20, adding the laser mirrors to the cavity results in laser action and rapid gain reduction to near transparency, caused by high peak radiation field buildup in the cavity. Predicted peak laser power flux is very high, exceeding ~ 10 MW/cm2, which is caused by “gain switching” in the cavity at a very low initial radiation field in the cavity. At these operating conditions, approximately 25% of the total vibrational energy flux, or ~ 500 W, is coupled out as laser power. Thus, the model predicts that a very powerful c.w. laser is possible at these operating conditions.

While modeling calculations suggest the proposed laser system will be successful, much experimental validation is required. The major issue addressed in this study is the predicted production of extremely high power loading of the CO vibrational mode, and the persistence of strong lasing even at temperatures well in excess of the low, near cryogenic values (~ 125 K) of the most powerful and efficient electrically-excited CO lasers. Lasing tests in high power loading conditions, together with detailed measurements of vibrational state populations and lasing output, provide a data basis to test the validity of the modeling codes used in the analysis of the supersonic flow laser.

3.3. Optically pumped CO laser experiments and kinetic model validation

For the validation measurements, experiments were conducted in a flowing gas cell, in which CO in an Ar diluent was vibrationally-exited by absorption of powerful radiation coming from two electrically-excited CO lasers. This experimental setup is shown in Fig. 21. In the middle of the figure is the flowing gas absorption cell. Top and bottom are the two CO lasers (Pump laser A and Pump laser B). The optical arrangement is such that the absorption cell and both pump lasers are within a single optical cavity. Two pump lasers are used to insure maximum power delivery to the flowing CO in the absorption cell. The cell is equipped with optical windows along its length, to enable spontaneous radiation from the vibrationally excited CO in the cell to be monitored by Fourier Transform Infrared (FTIR) emission spectroscopy, using the Bruker instrument shown. From analysis of these emission spectra, the distribution of populations of the vibrational quantum states and the translational/rotational mode temperature in the pumped cell are inferred. Further, the cell is equipped with a dichroic mirror and a total reflector, as shown, which establish a laser cavity for the cell alone, and any CO laser radiation arising from the cell is monitored on the Varian FTIR spectrometer shown. Mixtures of a few percent of CO in Ar flow through the cell at velocities in the range of 5–25 cm/s. The in-cavity radiation generated by the pump lasers is of $O[1$ kW c.w.]. With this level of pump intensity, the CO in the cell absorbs considerable power in the vibrational states, with power loadings above those typical of conventional CO lasers. Full details of these experiments are given in Ref. [42]; here, we summarize some key results.

Fig. 22 shows CO vibrational distribution functions inferred from the emission spectra radiated from the central side window in the cell, when the pump laser fields are on, maintaining high levels of vibration excitation in the flowing CO. As in the previous model calculations we have shown, the relative populations of each vibrational state, normalized by the ground state population, N_v/N_0, is plotted against vibrational quantum number. Here, however, the circular symbols show actual experimental measurement of each state population. Two such experimental distributions are shown. The distribution with the larger state populations is when the resonator mirrors on the cell are aligned; no laser power is being removed. The distribution with the smaller state populations is when the resonator mirrors on the cell are unaligned; no laser power is being removed. The lowered populations of the vibrationally excited states are striking. The two line distributions shown in the figure are the kinetic model calculations, done for the experimental conditions of the
Fig. 22. Experimental measurement and model prediction of vibrational population distributions in an optically pumped cell. Symbols: CO vibrational distribution functions inferred from the emission spectra, with the resonator in and out of alignment. Lines: kinetic model predictions at the same conditions. Reduction of high CO vibrational level populations, caused by stimulated emission energy removal in the cell during lasing (when resonator is aligned), is apparent.

Fig. 23. Pump CO laser spectrum (blue) measured after the dichroic mirror (9.4 W) and optically pumped laser spectrum (red) predicted by the model at the conditions of Fig. 22 (resonator in alignment). Predicted conversion efficiency 28%. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 24. Laser (intracavity flux) spectra measured with the resonator in alignment (top) and out of alignment (bottom), at the conditions of Fig. 22 (3% CO in Ar, P = 10 Torr, T = 335 K). Additional laser lines generated in the optically pumped cell are shown in red. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Further validation of the predictive model was afforded by studies of the working laser resonator established on the pumped cell. Fig. 23 shows such a prediction for the cell resonator. In this case, a 3% mixture of CO in Ar is flowing through the cell, at a pressure of 10 Torr and 335 K temperature. Just under 10 W of power from one pump laser is entering the cell. The figure shows the actual measured power spectrum entering the cell from the pump laser, on the left in blue. The pump laser lines range from those from the \(v = 2 \rightarrow 1 \) vibrational band component to those from the \(v = 8 \rightarrow 7 \) band component. The rotational quantum numbers of these vib-rot lines are indicated by the blue triangles, and the rotational quantum numbers of the upper laser state are referred to the scale on the right hand side of the plot. For these pump conditions, the prediction of the modeling code for the cell resonator laser output is shown in red. It is assumed that the total gain length established on the cell by its mirrors is 100 cm. The predicted output power spectrum from the cell resonator is shown in the red vertical bars, and the corresponding rotational quantum numbers of these vibrational–rotational lines are indicated by the red circles. Note that the pump laser spectrum is from lower vibrational state transitions, and rotational quantum levels of these pump laser lines are in the range \(J = 7 \) to \(J = 11 \). Such values are typical for the electrically-excited, liquid nitrogen wall cooled CO laser used for the pump, where the average temperature of the laser gases is \(\sim 150 \) K. On the other hand, the pumped cell is much warmer (335 K), and the predicted laser output arises from considerably higher, more populated rotational states in the range \(J = 16 \) to \(J = 20 \). In addition, the model predicts that most of the pump laser radiation will be absorbed, and the cell will lase higher vibrational band components, extending from \(v = 9 \rightarrow 8 \) to \(v = 23 \rightarrow 22 \), as shown. The predicted conversion efficiency for this case is 28%, i.e., 2.8 W of the input pump excitation power of 10 W is produced at output from the cell resonator.

Fig. 24 shows the actual performance of the pumped cell resonator for the conditions of the model predictions of Fig. 22. The lower spectrum of the figure shows the remaining power spectrum in cavity with the cell resonator unaligned, but with CO flowing in the cell. This can be compared with the totally unabsorbed power spectrum coming from the pump laser in Fig. 23. It can be seen that some of the pump laser lines are totally absorbed by the cell, and others are diminished. The upper spectrum is the laser power spectrum coming from the cell with the cell resonator aligned. Lines that appear in the pump radiation are shown in blue, and the additional lines generated only in the optically pumped cell are shown in red. The agreement with the model predictions is excellent. As predicted, the cell is lasing on higher vibrational band components, and on rotational levels reflecting the high cell temperature. The actual band component and vibrational–rotational line assignments are given on the figure. We note that the actual gain path is shorter than the 100 cm assumed for the model calculation, and actual cavity losses are somewhat greater than those assumed in the calculations. This...
performance is consistent with the lower reflectivity of the resonator mirrors at the shorter wavelengths, shown on the black curve. Again, consistent with the model calculations and the shorter experimental gain length, actual conversion efficiency by the cell is as high as 14.4%, and the cell lasers at temperatures as high as 415 K.

We conclude that this validates the kinetic model used for a major nonequilibrium flow system.

4. Conclusions

High enthalpy flows that have substantial amounts of thermodynamic disequilibrium in internal energy modes have long offered substantial challenges to engineers seeking methods for analysis and design. In modeling, the usual descriptive equations of continuum fluid mechanics must be supplemented by kinetic equations governing the energy transfer among energy modes and chemical reactions governing species concentrations. The rates of such processes must be measured or predicted theoretically for incorporation into the kinetic equations. Most critically, validation of the descriptive equations can only be accomplished by detailed experimental measurement in the flow. It is necessary to measure the energy content in each mode, the species densities, and, often, the specific quantum state populations in each mode. Measurement, particularly in hypersonic/supersonic flow fields, must be non-intrusive, and often there is an additional requirement for high spatial- and time-resolution of such measurements.

As reviewed in the present chapter, there has been some substantial recent progress in addressing these challenges. Optical emission measurements, and laser-based spectroscopic interrogation diagnostics, play a major role in experimental studies of the flows. It is possible to resolve state populations and rotational/molecular temperatures in the layer behind a bow shock in the small tunnel studied. We emphasized that these non-intrusive laser diagnostic systems are complex, and development has depended on use of a small tunnel with relatively long run times and short turn around periods. This development must be done before transferring the diagnostic to larger scale, short-test-time facilities. Similar considerations pertain to the development of a new high power flowing gas laser system, as reviewed above. Experiments and modeling of a laboratory-scale system is essential before development of a large scale device. In summary, the approaches reviewed here afford means for extensive future development of critical nonequilibrium flow devices.

Acknowledgments

We gratefully acknowledge the support of the Air Force Office of Scientific Research for basic studies of nonequilibrium hypersonic flows (Program Managers Drs. John Schmisseur and Dr. Ivett Leyva); the Lockheed Martin Corporation for hypersonic flow laser energy recovery studies (Program Managers Drs. Luke Uribarri and Ned Allen); and the Michael A. Chaszeky gift to the OSU Nonequilibrium Thermodynamics Laboratories. We wish to thank Dr. Graham Candler and his co-workers for CFD Navier–Stokes modeling of the M=5 wind tunnel, and Drs. George Schatz and Timothy Minton for sharing their results for creating population inversions in CO, prior to publication.

References

[38] Schatz G. Private communication; 2012.