Thermal Mode Nonequilibrium in Gas Dynamic and Plasma Flows

by
Igor Adamovich, Walter Lempert, Vish Subramaniam and William Rich

The Michael A. Chaszeyka
Nonequilibrium Thermodynamics Laboratories
Dept. of Mechanical Engineering
The Ohio State University

AIAA 39th Plasmadynamics and Lasers Conference
Seattle, Washington, June 25, 2008
• What is thermal mode nonequilibrium?
 Emphasis on high density, collision-dominated flows, cold molecular plasmas

• Environments
 i) Cool Electric Discharge Plasmas
 Self-Sustained vs. Preionized
 ii) Optically Pumped Plasmas
 Excitation of Vibrational States
 Kinetics and Energy Transfer Studies
 iii) Gas Dynamic Flows
 Supersonic Expansions of High Enthalpy Gases
 Strong Shock Waves

• Applications
 i) Plasma Wind Tunnels
 ii) Gas Lasers
 iii) Chemistry: Isotope Separation

• Summary: Where do we go with this?
What is thermal mode equilibrium?

\[\frac{n_i}{g_i} \sim \exp \left(-\frac{E_i}{kT} \right), \]

\[N = \sum n_i, \] and \[E = \sum n_i E_i \]

If we know the energy levels, \(E_i \), and the gas temperature, \(T \), we can calculate the whole ideal gas thermodynamic table:

Table 1 Air at Low Pressures (for One Pound)

<table>
<thead>
<tr>
<th>T</th>
<th>t</th>
<th>h</th>
<th>(p_r)</th>
<th>u</th>
<th>(v_r)</th>
<th>(\phi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>540.3</td>
<td>240.98</td>
<td>12.298</td>
<td>172.43</td>
<td>30.12</td>
<td>.75042</td>
</tr>
<tr>
<td>1001</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1002</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1003</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1004</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Thermal nonequilibrium exists whenever:

- The populations, \(\frac{n_i}{N} \), of one or more modes are distributed according to the Boltzmann law, but the temperature, \(T \), of at least one mode differs from that of the others.

OR

- The populations, \(\frac{n_i}{N} \), of one or more modes are not distributed according to the Boltzmann law.
Fraction of Power into each Mode, as a function of \(E/N \). \(E/N \) is approximately proportional to the mean energy of the free electrons.

1. Rotational mode
2. Vibrational mode
3. Electronic mode
4. Ionization

\[
\frac{E}{N} \text{ is approximatively proportional to the mean energy of the free electrons.}
\]

<table>
<thead>
<tr>
<th>Plasma Tube</th>
<th>Ratio of Electric Field, (E), to total number density of molecules, (N)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Electric Field = Voltage/Electrode Separation (E = V/L)</td>
</tr>
</tbody>
</table>
Environments: Preionized Electrical Glow Discharge
Short Pulse HV Ionizer, D.C. Sustainer - Geometry

Pulser electrodes in top and bottom walls
DC electrodes in side walls
Flow direction left to right

Dimensions: 1 cm x 5 cm, 10 cm long
Mach number: M~0.2
Discharge pressure: up to 160 torr
(O₂-He, O₂-Ar)
Mass flow rate: up to 12 g/sec
Environments: Preionized Electrical Glow Discharge
Short Pulse HV Ionizer, D.C. Sustainer - Performance

The Ohio State University
Nonequilibrium Thermodynamics Laboratories

On the left, species concentrations after the ionizing pulse, on the right, schematic of the pulsed and d.c. discharge operation. \(P=0.1 \text{ atm}, \ T=300 \text{ K}, \ E/N_{max}=350 \text{ Td}, \ E_{max}=8.5 \text{ kV/cm}, \tau_{pulse}=10 \text{ nsec} \)
Environments: Preionized Electrical Glow Discharge
Short Pulse HV Ionizer, D.C. Sustainer - Photos

The Ohio State University
Nonequilibrium Thermodynamics Laboratories

P=300 torr, 10 kHz
P=500 torr, 10 kHz

\[
\frac{k_k}{k_r} = \exp \left(\frac{\Delta E_{v,v-1} - \Delta E_{w,w+1}}{T} \right) > 1
\]

\[\text{CO}(v) + \text{CO}(w) \rightarrow \text{CO}(v-1) + \text{CO}(w+1)\]

The Ohio State University

Nonequilibrium Thermodynamics Laboratories

![Graph showing vibrational distribution function](image)

- Emission [arb. units]
- cm$^{-1}$
- Relative population
- T=1200 K
- Measured nonequilibrium distribution
- Boltzmann distribution at T=4100 K

Vibrational quantum number
Each peak is from a successive vibrational state, \(v \), ground state signal on the right. The time delay between the pump and probe pulse is (a) 150 ns, (b) 1 ms, (c) 5 ms, (d) 10 ms.
Optically Pumped Plasmas: Kinetics Studies
Experimental Setup for CO Plasma

The Ohio State University
Nonequilibrium Thermodynamics Laboratories
Optically Pumped Plasmas: Kinetics Studies
Energy Transfer and Kinetics Processes in a CO Plasma

The Ohio State University
Nonequilibrium Thermodynamics Laboratories

Relative population

Ionization:
\[\text{CO}(v)+\text{CO}(w) \rightarrow (\text{CO})_2^+ + \text{e}^- \]

V-E:
\[\text{CO} (X^1\Sigma,v\sim40) + \text{M} \rightarrow \text{CO} (A^1\Pi) + \text{M} \]

Chem. Reactions:
\[\text{CO}(v)+\text{CO}(w) \rightarrow \text{CO}_2+C \]

T = 600 K
\(T_v = 3300 \text{ K} \)

2 Torr CO, 100 Torr Ar, CO laser power 10 W c.w.
Optically Pumped Plasmas: Kinetics Studies
Optically Pumped CO Plasma Photo
Vibrational energy level populations for an optically pumped air plasma. If energy were equilibrated, temperature of vibrational modes would be ~ 2000K. Measured as kinetic temperature is only 500 K. Extreme nonequilibrium is created in a steady state, atmospheric pressure, molecular gas plasma. Gas mixture is CO/N2/O2=5/75/20, P=1 atm. Pump laser power is 10 W.

Raman Spectra

Experimental Vibrational State Populations
Inferred from Raman Spectra. Calculated State Populations from Master Equation Kinetic Model
Optically Pumped Plasmas: Kinetics Studies

Associative Ionization in Optically Pumped Plasmas I

\[
\text{CO}(v) + \text{CO}(w) \rightarrow (\text{CO})_2^+ + e^- , \ E_v + E_w > E_{\text{ion}}
\]

Thomson discharge

Microwave absorption

Electron production rate:

\[k_{\text{ion}} \approx 10^{-13} \text{ cm}^3/\text{s} \]

Electron density:

\[n_e \approx 10^{11} \text{ cm}^{-3} \]
Optically Pumped Plasmas: Kinetics Studies

Associative Ionization in Optically Pumped Plasmas II

$\text{CO}(v) + \text{CO}(w) \rightarrow (\text{CO})_2^+ + e^- , E_v + E_w > E_{\text{ion}}$

Current-voltage characteristics of the DC Thomson discharge at different helium partial pressures

Vibrational distribution functions of carbon monoxide at different helium partial pressures
Optically Pumped Plasmas: Kinetics Studies
Coupling of Vibrational Populations with Free Electrons

The Ohio State University
Nonequilibrium Thermodynamics Laboratories

Fig. 11. Electric field influence on different CO vibrational level populations.

Fig. 12. Qualitative demonstration of the $V \rightarrow e \rightarrow V - \Delta V$ effect (strongly exaggerated). ϵ: electron energy; T_e: electron temperature.
Optically Pumped Plasmas: Kinetics Studies
Measurements of Electron Density Decay (by microwave attn) for E-beam Created Plasma – Experimental Schematic

The Ohio State University

Nonequilibrium Thermodynamics Laboratories
Plasma Power Consumption at 10^{13} Electrons/cm3 in 1 Atm, 560 K Air:

Electron-Ion Recombination
- $\beta = 2.5 \times 10^{-7}$ cm3 sec$^{-1}$
- Nonequilibrium: 56 W cm$^{-3}$
- Equilibrium: 450 W cm$^{-3}$

Electron Attachment to O$_2$
- $k_{\text{eff}} = 2.3 \times 10^{-33}$ cm6 sec$^{-1}$
- Nonequilibrium: 1.2 W cm$^{-3}$
- Equilibrium: 1.4 kW cm$^{-3}$
Attachment is weakly dependent upon heavy species temperature whereas detachment is highly dependent.

\[\text{O}_2 + e^- + M \leftrightarrow \text{O}_2^- + M \]

\(\text{O}_2 \) Electron Affinity \(~0.43\) eV (\(~\text{Two Vibrational Quanta}\)
200/18/35 N$_2$/CO/O$_2$ – Optically Pumped
(Diameter of Vibrationally Excited Region ~ 1 mm)
Average energy per molecule in electron Volts.
(0.1 eV = 1,161 °K)

Expansion of a gas mixture of 20% CO, 20% N₂, 60% Ar,
Stagnation Pressure = 100 atm.
Stagnation Temperature = 2,000 °K.
15 ° Half Angle Nozzle,
Expands to M = 10 at 100 cm downstream of throat

Distance from nozzle throat, in centimeters
Gas Dynamic Flows: Thermal mode nonequilibrium behind a hypersonic shock wave

$T_t = \text{translational mode temperature}$

$T_r = \text{rotational mode temperature}$

$T_v = \text{vibrational mode temperature}$

Mode
Temperature
Degrees K

Distance behind shock front, in meters
Plasma Wind Tunnels: A supersonic tunnel with energy loading of selected internal states in the plenum

Schematic of the wind tunnel discharge section / nozzle / test section assembly
Plasma Wind Tunnels: A supersonic tunnel with energy loading of selected internal states – photo of plenum in operation

Photograph of a discharge in the nozzle plenum. Dimensions 4x4x10 cm.
A uniform, cold gas fills the plenum; O_2/He mixture shown, similar uniformity for air; P_0 to 1 atm.
Plasma Wind Tunnels: A supersonic tunnel with energy loading of selected internal states – objects in a 2-D, M = 3 test section
Plasma Wind Tunnels: Calculated $M = 4$ Flow over a 0.5 cm Dia semicylinder. Vibrationally Excited N_2 Expanding from 1 atm.

From E. Josuyla, AFRL
Plasma Wind Tunnels: Calculated $M = 4$ Flow over a 0.5 cm Dia semicylinder. Vibrationally Excited N_2 Expanding from 1 atm.

From E. Josuyla, AFRL
Plasma Wind Tunnels: An $M = 4$ MHD Tunnel, with transverse pre-ionized discharge and a 2 Tesla Field in test section
Plasma Wind Tunnels: An M = 4 MHD Tunnel. Lorentz force effect on turbulent boundary layer density fluctuation spectra.

Both B field directions
Laser beam midway

500 W RF, B=1.5 T, U=1500 V (accelerating MHD force)
500 W RF, B=1.5 T, U=1500 V (decelerating MHD force)

Nitrogen, M=3, P0=1/3 atm
Both accelerating and decelerating Lorentz force are created for two possible combinations of B and E fields, as shown.
R is the separation of the C and O nuclei.

R_e is the equilibrium (nonvibrating) separation.

$V(R) = \frac{1}{2} K(R - R_e)^2$ is the potential energy stored in the oscillator.
Gas Lasers: Carbon Monoxide Electric Discharge Laser - Schematic
Gas Lasers: Carbon Monoxide Electric Discharge Laser – Photo during operation
Gas Lasers: Carbon Monoxide Electric Discharge Laser –
Kinetic Modeling of CO Fundamental Band Laser,
Comparison with OSU Laser Performance

The Ohio State University

Nonequilibrium Thermodynamics Laboratories

![Graph showing power output vs. vibrational quantum number with experiment and calculations compared.](image)

- **Power, W**
 - 2.5
 - 2.0
 - 1.5
 - 1.0
 - 0.5
 - 0.0

- **Vibrational quantum number**
 - 0
 - 2
 - 4
 - 6
 - 8
 - 10
 - 12
 - 14
 - 16
 - 18
 - 20

Legend:
- **实验** (experiment)
- **计算** (calculations)

The Ohio State University Nonequilibrium Thermodynamics Laboratories

Theoretically Predicted Output Line Intensities

Experimentally Measured Output Line Intensities
Gas Lasers: An Electric Discharge-Excited Oxygen-Iodine Laser (DOIL) – Boltzmann equation solver results: electron energy balance

The Ohio State University
Nonequilibrium Thermodynamics Laboratories

![Graph comparing singlet delta production in O₂-He and O₂-Ar gases with E/N (10^-16 V cm²) as a parameter.]

O₂-He

Highest estimated O₂(1Δ) yield achieved so far ~10 %
Gas Lasers: An Electric Discharge-Excited Oxygen-Iodine Laser (DOIL)

Schematic of Electric Discharge SDO Generator

Advantages of transverse vs. axial discharge: Large volume, stable at high pressures / powers, rapid convective cooling vs. slow wall cooling. Used in most high power electrically excited lasers.

Discharge volume 50 cm³, pressures up to 460 torr, flow rate up to 0.1 mole/sec (O₂), 1 mole/sec (He)
Gas Lasers: An Electric Discharge-Excited Oxygen-Iodine Laser (DOIL)

Gain at Optimized Conditions: 0.12 %/cm at T=100 K (Currently!)

Adding NO: major discharge stabilization factor

Discharge power increased from 1.9 kW to 2.4 kW

\[P_0=107 \text{ torr}, \ 15\% \ O_2 - \text{He flow, NO 0.2 mmole/sec (550 ppm), } \nu=34 \text{ kHz, } U_{PS}=3.1 \text{ kV, } I=1.54 \text{ A, discharge power 2.4 kW, } I_2 \ 70 \text{ \mu mole/sec (190 ppm).} \]

Gain may be limited by I\(_2\) flow rate
Vibrationally excited CO prepared in cell reacts according to:

\[\text{CO}(v) + \text{CO}(w) \rightarrow \text{CO}_2 + \text{C} \]
Summary

What have we learned?

• Improved methods to sustain extreme mode disequilibrium in gases: High densities, low gas kinetic temperatures, large volumes
• New data on mechanisms and rates of some critical energy transfer processes in molecular gases of aerospace interest
• Methods for selective excitation of internal energy states
• New applications: improved high power c.w. gas lasers, novel chemical syntheses, new aerodynamic control techniques

Future directions?

• Special purpose supersonic aerodynamic testing
• Modeling code validation
• High power c.w lasers and applications: novel refrigeration?
• More chemistry: new products
Support:
USAF:
AFOSR Space Power & Propulsion Program
AFOSR Unsteady Aerodynamics and Hypersonics Program
AFRL Air Vehicles Directorate
AFRL Directed Energy Directorate
NASA Glenn Research Center
NSF
The Michael A. Chaszeyka Gift

Collaborators:
Univ. of Bonn Physics Dept; Heat and Mass Transfer Institute, Belarussian Academy of Physics; Gas Laser Lab, Lebedeev Physical Institute, Moscow Physical Technical Institute

Kind Listeners